

Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior

Chengyuan Zhang^a, Cathy Wu^b, and Lijun Sun^{a,†} († lijun.sun@mcgill.ca)

a. Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.

b. Laboratory for Information & Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Introduction

Table 1: Comparison of related approaches for modeling driver behavior.

Feature/Model	IDM	Bayesian IDM	GMM	HMM	HMM-GMM	HDP-HMM	NN (LSTM)	FHMM-IDM (Ours)
Model Type	Deterministic	Probabilistic	Probabilistic	Probabilistic	Probabilistic	Probabilistic	Deep Learning	Probabilistic
Adaptivity ¹	x	x	x	x	x	x	x	x
Latent Behavior Type ²	x	x	Discrete	Discrete	Discrete	Discrete	Continuous	Discrete
Latent Mode Cardinality ³	-	-	Fixed	Fixed	Fixed	Infinite	Fixed	Factorial Fixed
Stochasticity	x	✓	✓	✓	✓	✓	Implicit	✓
Parameter Estimation ⁴	Heuristic	MCMC	EM/MCMC	EM/MCMC	EM/MCMC	EM/MCMC	Gradient descent	MCMC
Interpretability ⁵	High	High	Moderate	Moderate	Moderate	Moderate	Low	High
Traffic Context Modeling ⁶	x	x	✓(features)	Moderate	✓(features)	✓(implicit)	✓(learned)	✓(explicit)
Heterogeneity Handling ⁷	Poor	Moderate	Moderate	Moderate	Moderate	Excellent	Excellent	Excellent
Data-driven Flexibility ⁸	Low	Moderate	Moderate	Moderate	Moderate/High	High	High	High
Training Complexity ⁹	Low	Moderate	Low	Moderate	Moderate	High	High	High

¹ Can the model dynamically adjust to changing behavior? ² Type of latent representation: discrete (mode switches) or continuous (trajectory embeddings). ³ Whether the number of latent modes is fixed a priori or inferred. ⁴ How model parameters are estimated: EM, gradient descent, MCMC, etc. ⁵ Can latent states or parameters be interpreted as meaningful driving behavior? ⁶ Whether traffic context (e.g., relative speed, gap) is explicitly used in latent modeling. ⁷ Ability to capture driver-specific variation (e.g., hierarchical priors, class mixture). ⁸ Model's ability to fit and learn from diverse and high-dimensional driving datasets. ⁹ Overall training/inference complexity: data requirements, convergence cost, parallelism.

Table 2: Clarification of key terminologies used in this study.

Term	Domain	Description
Latent State	Latent model variable	Inferred latent states in the HMM that jointly encode traffic scenarios and driving regimes. These are learned from data and do not correspond one-to-one with predefined scenarios or regimes.
Traffic Scenario	Traffic context	Inferred external traffic conditions such as free-flow or stop-and-go. Used to contextualize the scenario in which drivers operate.
Driving Regime	Driver behavior	A specific, short-term car-following action or behavioral mode (e.g., aggressive gap-closing, cautious following, free-flow cruising). These are transient states, not fixed driver traits.
Case	Empirical examples	Real-world driving trajectories selected from the highD dataset to illustrate representative behaviors and validate the model.

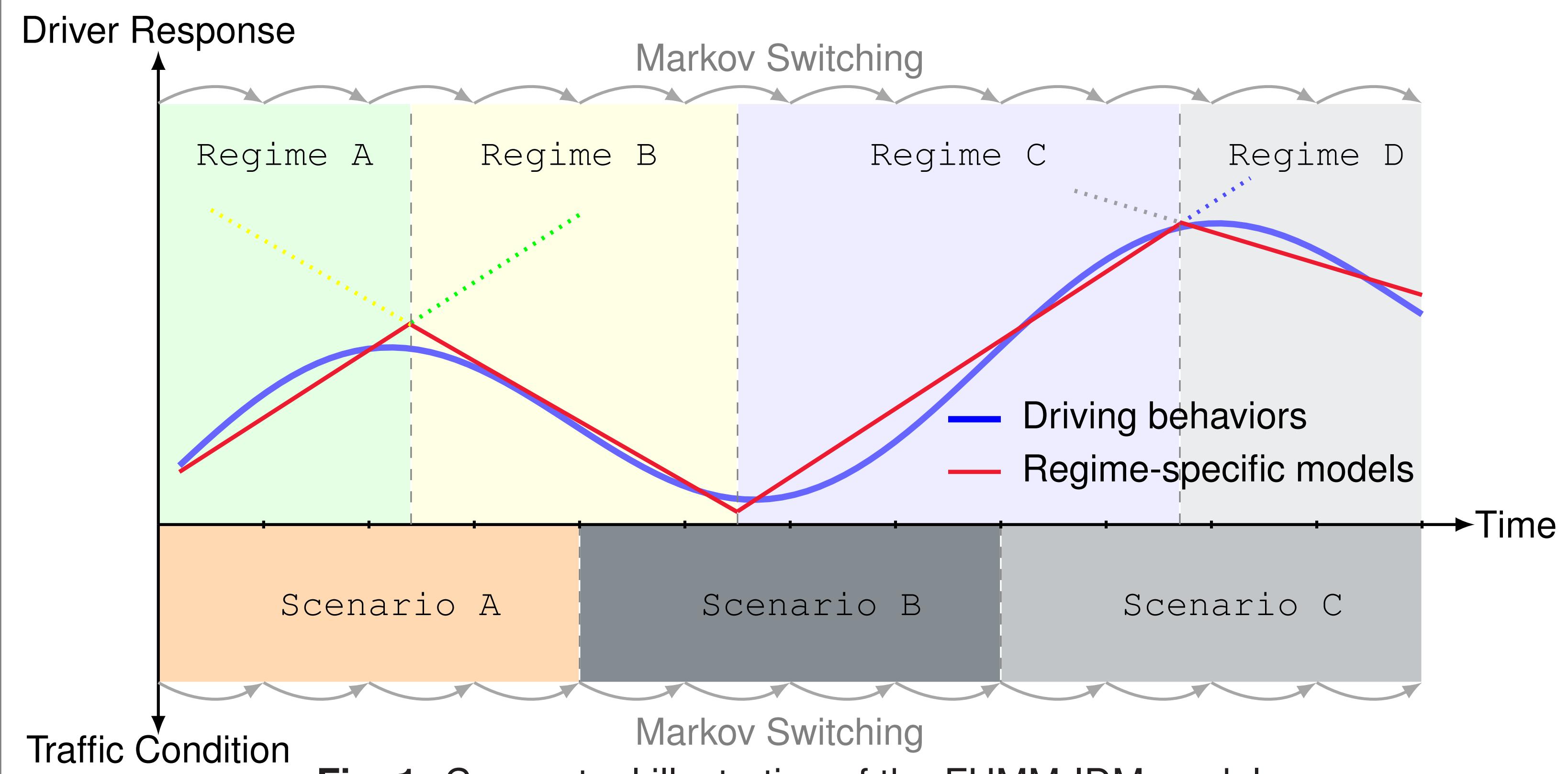


Fig. 1: Conceptual illustration of the FHMM-IDM model.

Summary

- **Markov regime-switching framework:** Separates intrinsic driving regimes from external traffic scenarios, reducing non-identifiability in naturalistic data.
- **FHMM-IDM with Bayesian inference:** Combines an FHMM with IDM; regimes map to distinct IDM parameters, and two latent Markov chains capture intention and context. MCMC enables robust calibration and uncertainty quantification.
- **Interpretable results:** Disentangling behavior and context supports regime-aware analysis. Experiments on HighD recover meaningful regimes and realistic transitions.

arXiv: <https://arxiv.org/pdf/2506.14762>

Code: The code will be released upon acceptance of the paper.

Methodology

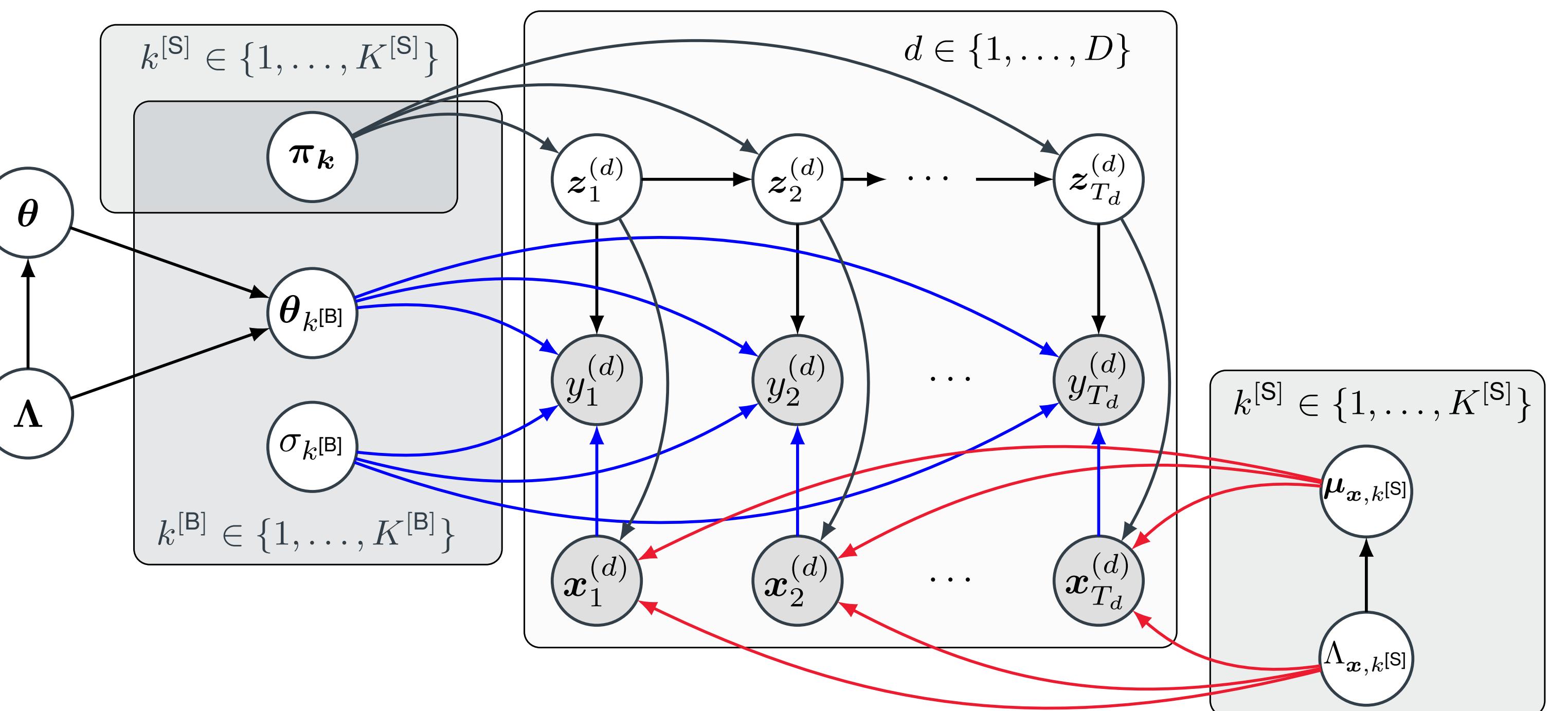


Fig. 2: Probabilistic graphical model of FHMM-IDM.

We define the observation model in FHMM-IDM with separate emission functions for the two factors:

1. **Driving-Behavior Local Evidence** $\psi_t^{[B]} \in \mathbb{R}^{K^{[B]}}$: The observed output y_t is independently influenced by the latent states $z_t^{[B]}$ and the covariates x_t . The emission is modeled as:

$$y_t | x_t, \Theta, z_t^{[B]} \sim \mathcal{N} \left(\text{IDM} \left(x_t; \theta_{z_t^{[B]}} \right), \sigma_{z_t^{[B]}}^2 \right), \quad (1)$$

where $\text{IDM} \left(x_t; \theta_{z_t^{[B]}} \right)$ is the predicted output based on the IDM, and $\sigma_{z_t^{[B]}}^2$ is the variance of the noise for state $z_t^{[B]}$.

2. **Traffic-Scenario Local Evidence** $\psi_t^{[S]} \in \mathbb{R}^{K^{[S]}}$: For the traffic scenario, we model the relationship between the covariates x_t and the latent state $z_t^{[S]}$ as

$$x_t | z_t^{[S]}, \mu_x, \Lambda_x \sim \mathcal{N} \left(\mu_{x,z_t^{[S]}}, \Lambda_{x,z_t^{[S]}}^{-1} \right), \quad (2)$$

where $\mu_{x,z_t^{[S]}}$ and $\Lambda_{z_t^{[S]}}$ are the mean and precision matrix of the scenario-driven input. We represent the collections of these parameters by $\mu_x = \{\mu_{x,k^{[S]}}\}_{k^{[S]}=1}^{K^{[S]}}$ and $\Lambda_x = \{\Lambda_{x,k^{[S]}}\}_{k^{[S]}=1}^{K^{[S]}}$. Therefore, the joint local evidence is given as

$$\begin{aligned} p(y_t, x_t | z_t, \Theta, \mu_x, \Lambda_x) &= p(y_t | x_t, \Theta, z_t^{[B]}) \cdot p(x_t | z_t^{[S]}, \mu_x, \Lambda_x) \\ &= \mathcal{N} \left(y_t; \text{IDM} \left(x_t; \theta_{z_t^{[B]}} \right), \sigma_{z_t^{[B]}}^2 \right) \cdot \mathcal{N} \left(x_t; \mu_{x,z_t^{[S]}}, \Lambda_{x,z_t^{[S]}}^{-1} \right). \end{aligned} \quad (3a)$$

$$(3b)$$

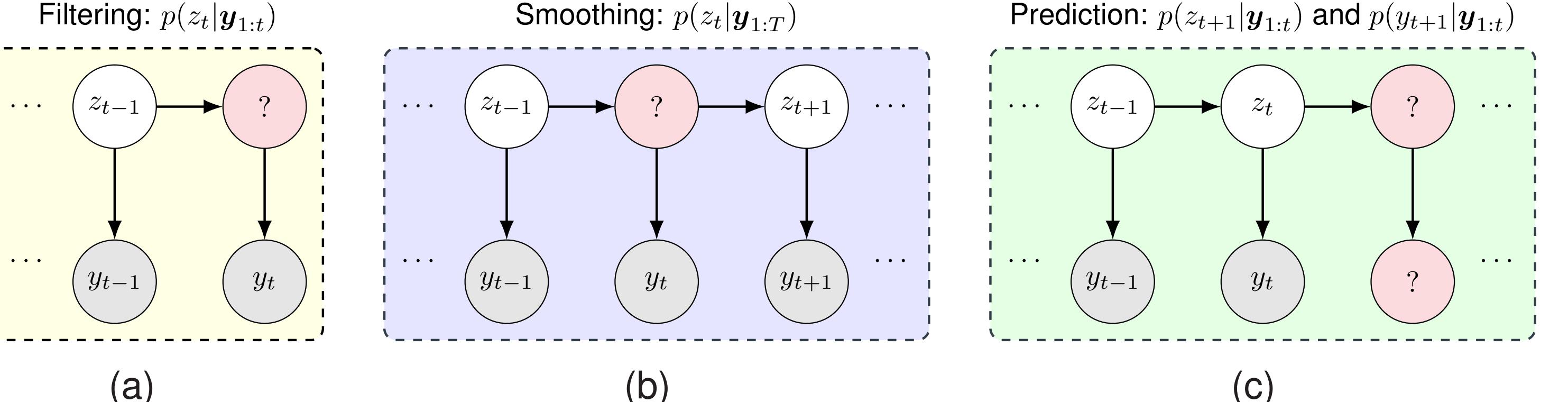


Fig. 3: Illustration of the filtering, smoothing, and prediction problem in HMM.

Identification of Interpretable Driving Regimes

Table 3: Learned IDM parameters (θ_k) and noise standard deviation (σ_k) for each regime.

Total states	State No.	$\theta_k = [v_f, s_0, T, a_{\max}, b]$	σ_k	Driving Regime
$K^{[B]} = 1$	#1	[38.57, 2.71, 0.86, 0.14, 1.33]	0.40	Averaged Behavior
$K^{[B]} = 2$	#1	[39.26, 1.80, 0.59, 0.30, 1.40]	0.47	High-Speed Seeking
	#2	[9.84, 5.10, 1.29, 0.08, 0.50]	0.15	Congested Cruising
	#1	[31.51, 4.32, 1.60, 0.13, 1.42]	0.11	Cautious Following
	#2	[34.10, 1.17, 0.44, 0.90, 4.45]	0.33	Aggressive Following
$K^{[B]} = 5$	#3	[11.26, 10.20, 3.09, 0.07, 1.51]	0.23	Congested Cruising
	#4	[33.11, 2.15, 0.90, 0.37, 1.51]	0.08	Steady-State Following
	#5	[42.11, 1.15, 0.71, 0.62, 1.72]	0.11	High-Speed Seeking

Table 4: Learned parameters of each traffic scenario latent state. Each scenario is characterized by the mean speed μ_v , relative speed $\mu_{\Delta v}$, and spacing μ_s , forming the mean vector $\mu_{x,k^{[S]}}$. The interpretation column describes the typical traffic condition reflected by each state, inferred from statistical patterns and their behavioral context.

Total states	Scenario No.	$\mu_{x,k^{[S]}} = [\mu_v, \mu_{\Delta v}, \mu_s]$	Interpretation
$K^{[S]} = 1$	#1	[5.73, 0.00, 14.32]	Averaged Traffic
$K^{[S]} = 2$	#1	[3.95, -0.08, 9.12]	Congested and Dense Traffic
	#2	[8.30, 0.10, 21.82]	High-Speed Cruising
	#1	[5.71, 0.73, 19.04]	Approaching (Stop-and-Go)
	#2	[6.20, -0.34, 38.96]	Gradual Dissipation
$K^{[S]} = 5$	#3	[4.89, 0.02, 12.67]	Steady-State Following
	#4	[3.66, -0.20, 6.90]	Congested and Dense Traffic
	#5	[10.22, -0.17, 16.54]	High-Speed Cruising

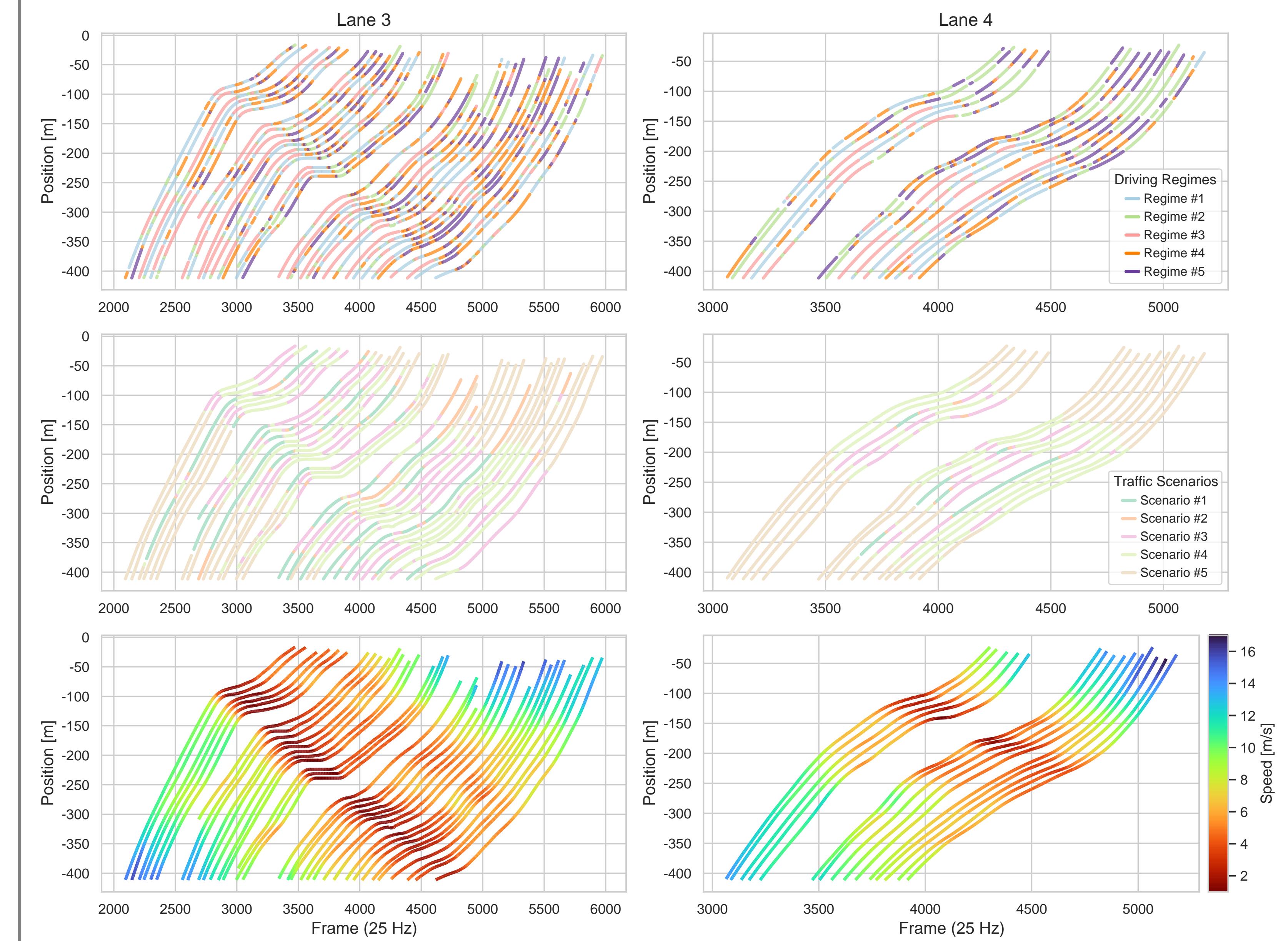


Fig. 4: Samples of time-space trajectories from the HighD dataset. *First row:* driving regime coloring. *Second row:* scenario coloring. *Third row:* Speed Coloring. Patterns: Scenario #4 often aligns with lower-speed segments, while Scenario #5 consistently aligns with higher-speed segments; Scenario #1 often co-occurs with Regime #3 in the approaching situations.