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Introduction

leading vehiclefollowing vehicle

Fig. 1: Physical settings of a car-following scenario.

▶ The Challenge: Traditional car-following models are deterministic or use sim-
plistic, uncorrelated noise. They fail to capture the "stochasticity" in human
driving arising from latent intentions, perception errors, and memory effects.

▶ The Gap: Existing stochastic models assume stationarity (fixed noise struc-
ture), which cannot adapt to evolving traffic contexts (e.g., sudden braking).

▶ Our Goal: Develop an interpretable car-following framework that captures
context-dependent temporal correlations.

We represent the action at = a(xt, t) of a following vehicle at time t as

at = fCF(xt) + δ(t) + ϵt, (1)

where xt = [st,∆vt, vt] denotes the input covariates, fCF(xt) as a function of xt

represents the mean car-following model, δ(t) accounts for temporal correlations,
and ϵt∼

i.i.d. N (0, σ2
0) is an independent and identically distributed (i.i.d.) noise term

with variance σ2
0 .

¬arXiv: https://arxiv.org/pdf/2507.07012 (Accepted at ISTTT26 & TR Part B)
¬Code will be released soon.

Summary
▶ Hybrid Neural-GP Framework: We introduce a novel stochastic model that

integrates deep recurrent neural networks (DeepAR) with a nonstationary
Gibbs kernel, explicitly capturing context-dependent temporal correlations in
car-following behavior that traditional models overlook.

▶ Interpretable Behavioral Dynamics: The model offers explainable insights by
learning dynamic kernel parameters: the lengthscale adapts to reflect driver
reaction frequency (memory), while the variance captures evolving tolerance
for behavioral heterogeneity.

▶ Superior Simulation Fidelity: Validated on the HighD dataset, our ap-
proach significantly outperforms both deterministic baselines and stationary
GP variants, achieving lower simulation errors (RMSE) and more realistic, well-
calibrated uncertainty quantification (CRPS/ES).

Methodology
We propose a hybrid formulation combining Deep Neural Networks with Nonsta-
tionary Gaussian Processes (GPs). The general model formulation:

at = aNN(ht;θ)︸ ︷︷ ︸
Mean Dynamics

+ δGP(t;λ)︸ ︷︷ ︸
Temporal Correlation

+ ϵt︸︷︷︸
White Noise

, (2)

The Core Innovation: Scenario-Adaptive Gibbs Kernel

kGibbs(t, t
′;λ) := σ(t)σ(t′)

√
2ℓ(t)ℓ(t′)

ℓ(t)2 + ℓ(t′)2
exp

(
− (t− t′)2

ℓ(t)2 + ℓ(t′)2

)
︸ ︷︷ ︸

k⋆
Gibbs(t,t

′;λ)

, (3)

Notably, the Gibbs kernel simultaneously captures two critical properties: Het-
eroskedasticity via context-dependent variance σ2(xt), representing time-
varying uncertainty; and Nonstationary correlations via context-adaptive length-
scale ℓ(t), encoding dynamic adaptation in temporal dependence.

Training Method: “Better Batch” strategy a1
...

a∆T


︸ ︷︷ ︸

abatch

∼ N

( aNN(h1;θ)
...

aNN(h∆T ;θ)


︸ ︷︷ ︸

abatch
NN

,Σ

)
, (4)

Σ =

 k(∆t,∆t;λ) · · · k(∆t,∆T∆t;λ)
...

. . .
...

k(∆T∆t,∆t;λ) · · · k(∆T∆t,∆T∆t;λ)


︸ ︷︷ ︸

K=diag(σbatch)K⋆diag(σbatch)

+σ2
0I∆T (5)

where I∆T denotes a ∆T × ∆T identity matrix, σ2
0I∆T captures homoskedastic

observation noise, σbatch = [σ(∆t), . . . , σ(∆T∆t)], and K⋆ = [k⋆Gibbs(t, t
′;λ)] is the

base kernel matrix prior to applying variance modulation.

Prediction: Given the neural predictions, the conditional likelihood of the ob-
served acceleration sequence abatch follows the multivariate Gaussian

abatch|abatch
NN , ℓbatch

NN ,σbatch
NN ,θ ∼ N (abatch

NN ,K + σ2
0I∆T ), (6)

where σ2
0I∆T models homoskedastic observation noise. This formulation allows

the model to output both predictions and temporally structured uncertainty, modu-
lated by the GP kernel.

Optimization Problem:

θ⋆ = argmin
θ

1

2
log |K+σ2

0I∆T |+
1

2
(âbatch−abatch

NN )⊤(K+σ2
0I∆T )

−1(âbatch−abatch
NN ).

(7)
Here âbatch denotes the observed accelerations, and abatch

NN are the corresponding
model predictions. The constant term n log(2π)/2 is omitted as it does not affect
the optimization.

Stochastic Simulations

Fig. 2: Stochastic simulation results for three representative car-following cases. (a)-(c):
Each example shows 100 predicted trajectories of spacing s, speed v, and acceleration
a (blue), compared to the ground-truth (black). The dashed line marks the forecast start.
Below each example, simulated context-dependent ℓ(xt) and σ(xt) (orange) are compared
to DeepAR conditioned on ground truth (black). (d)-(f): Bottom-row heatmaps visualize the
kernel K, revealing the evolving temporal correlation structure during the forecast horizon.
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Fig. 3: Error distributions.
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