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Introductlon Methodology

We propose a hybrid formulation combining Deep Neural Networks with Nonsta-
tionary Gaussian Processes (GPs). The general model formulation:

following vehicle
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Fig. 1: Physical settings of a car-following scenario.

The Core Innovation: Scenario-Adaptive Gibbs Kernel
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L (a) Car-following Pair #1. (b) Car-following Pair #2. (c) Car-following Pair #3.
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