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Introduction

leading vehiclefollowing vehicle

Fig. 1: Physical settings of a car-following scenario.
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Fig. 2: The residual trends of the calibrated IDM have strong serial correlations.

The Intelligent Driver Model (IDM) is formulated as

aIDM(v,∆v, s) ≜ α

(
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−
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)2
)

(1)

s∗(v,∆v) = s0 + v T +
v∆v

2
√
αβ

(2)

Calibrating the IDM =⇒data
Identify [α, v0, s0, T, β].

¬arXiv: https://arxiv.org/abs/2210.03571
¬Code: https://github.com/Chengyuan-Zhang/IDM_Bayesian_Calibration

Summary
▶ We develop a novel Bayesian calibration approach to learn unbiased parame-

ters and their full posterior distribution. We introduce GP to characterize the
autocorrelation in residuals. This approach is applied to calibrate IDM, and
shapes the form of the memory-augmented IDM (MA-IDM).

▶ We implement the MA-IDM with three hierarchies. Especially with a hierarchi-
cal MA-IDM, one can obtain diverse driving styles at the population level and
disparate driving behaviors at the individual level by sampling from the posterior
distributions of the well-calibrated hierarchical model. Therefore, we can gen-
erate enormous drivers with heterogeneous driving behaviors/styles governed
by the same population distribution. Therefore, our model can help create sim-
ulations with driver/car heterogeneity.

▶ We introduce an unbiased stochastic simulator, which is inspired by the corre-
sponding generative process of our Bayesian calibration approach. As a result,
the simulator can produce more realistic results than those with homogeneous
parameters or random parameters.

Methodology

Fig. 3: Probabilistic graphical models of B-IDM and MA-IDM.

✗: a(t)d = a
(t)
IDM d + ϵt, ϵt ∼

i.i.d. N (0, σ2
ϵ ). ✓: a(t)d = a

(t)
IDM d + a

(t)
GP d + ϵ, ϵt ∼

i.i.d. N (0, σ2
ϵ ).

▶ Main assumption: We model the true process of the car-following actions based
on three parts: (1) the mean trends a

(t)
IDM d, (2) an inertia residual a(t)GP d, and (3)

i.i.d. observation noise ϵ. Such that we have ad|id,θd ∼ N (aIDM d,K + σ2
ϵI).

▶ Hierarchical Bayesian IDM (B-IDM) and MA-IDM:

σ0 ∼ Exp(λ) ∈ R5

Σ ∼ LKJCholeskyCov(η,σ0)

ln(θ) ∼ N (µ0,Σ) ∈ R5

ln(θd) ∼ N (ln(θ),Σ) ∈ R5

ln(σϵ) ∼ N (µϵ, σ1) ∈ R

v
(t+∆t)
d ∼i.i.d. N (FIDM(i

(t)
d ;θd), (σϵ∆t)2)

σ0 ∼ Exp(λ) ∈ R5

Σ ∼ LKJCholeskyCov(η,σ0)

ln(θ) ∼ N (µ0,Σ) ∈ R5

ln(θd) ∼ N (ln(θ),Σ) ∈ R5

ln(σϵ) ∼ N (µϵ, σ1) ∈ R
ln(σk) ∼ N (µk, σ2) ∈ R
ln(ℓ) ∼ N (µℓ, σℓ) ∈ R

vd∼
i.i.d. N

(
FIDM(id;θd), (K + σ2

ϵI)∆t2
)

▶ Identified parameters:
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(a) Hierarchical B-IDM posteriors.
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(b) Hierarchical MA-IDM posteriors.

Fig. 4: The posterior distributions and the correlation matrices of the parameters of a truck
driver in the hierarchical B-IDM and MA-IDM.

Deterministic and Stochastic Simulations

(a) Deterministic simulations (hierarchical model).

(b) Stochastic simulations (hierarchical model).

Fig. 5: The deterministic (top) and stochastic (bottom) simulation results of a truck driver.
The black lines are the ground truth driving data; The yellow and fuchsia dotted lines are
the predicted motion states with the expectations of parameter posteriors; The red and blue
lines are the predicted motion states with the parameter samples drawn from posteriors.
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Fig. 6: The time-space diagram of the follower’s posterior trajectories at the point view of
another ‘observing’ vehicle with a constant mean speed.
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