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From Micro Interactions to Traffic Flow: Stochastic Driver Models for Realistic Traffic Simulation

About me

- Smart Transportation Lab at McGill University

- Research interests:
o Traffic flow theory;
- Stochastic simulation;
o Human behavior modeling;
- Bayesian learning;
o Multi-agent interaction.

- My research focuses on Bayesian inference, spatiotemporal modeling, traffic flow
theory, and multi-agent interaction modeling within intelligent transportation
systems, with an emphasis on bridging the gap between theoretical modeling and
practical traffic simulation through advanced statistical techniques with
appropriate uncertainty quantification.

- My motivation lies in advancing the understanding of human driving behaviors to
improve microscopic traffic simulations, ultimately contributing to safer and more
efficient transportation systems.
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PARTIAL CONDITIONAL
AUTOMATION AUTOMATION AUTOMATION AUTOMATION

The driver has The vehicle The vehicle can The vehicle can The vehicle
full control of features a single perform steering control most performs all
the driving automated and driving tasks. driving tasks
tasks. system. acceleration. under certain
conditions.

“HD and AD will coexist for several decades..
necessary to learn and model HD.”

FULL
AUTOMATION

The vehicle
performs all
driving tasks
under all
conditions.

It is still



From Micro Interactions to Traffic Flow: Stochastic Driver Models for Realistic Traffic Simulation

Motivation

- Human Driving Modeling (HDM)
- from data to policy (world as it is): heterogeneity, uncertainty, ...
- Autonomous Driving Modeling (ADM)
- from goal to policy (world as it should be): design reward and loss ...
- HDM is descriptive and generative. ADM is prescriptive and normative.

Human Driving (descriptive): Autonomous Driving (prescriptive):
“How do humans drive?” “How should an AV drive?”

[Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, and Lijun Sun. "Social interactions for autonomous driving: A
review and perspectives." Foundations and Trends® in Robotics 10, no. 3-4 (2022): 198-376.]
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Motivation

‘Aspect | HDM — [TTEETNE = | ADM — IOTETRTIOELTY

Concepts Explains and generates human Under explicit objectives and

actions with memory and constraints. Prescriptive, optimal
heterogeneity. Descriptive, policy may(x) = argmin, J(z,a)
stochastic policy 7u(a | zo:, 2)

Applications Realistic human agents in On-road autonomy; planning and
simulators; traffic flow studies; control; safety envelopes; mission

policy impact via micro-to-macro success
scaling; scenario discovery

Evaluation @ Human-likeness, Social Safety, Comfort, Rule and right-of-
metrics responsiveness, Flow realism way compliance, Risk margin
Role in sim Makes the world believable Succeeds within that world

HDM is judged by human-likeness and realism of the world it
creates. ADM is judged by safety, rule compliance, comfort,
and reliability inside that world.

[Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, and Lijun Sun. "Social interactions for autonomous driving: A
review and perspectives." Foundations and Trends® in Robotics 10, no. 3-4 (2022): 198-376.]
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Motivation

(highD dataset)

(a scene developed with highway-env)
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Motivation

- The goal of traffic simulations:
- Past: reproduce traffic phenomenon.
o Future: support the development and test of Autonomous Driving:
= Reinforcement learning for traffic control/management;
= Human-in-the-loop simulations;
= Safety, predictability, and uncertainty;

What is a “good” simulator?

(a demo developed with highway-env)
A realistic traffic simulator is not just a convenience but a necessity!

How do we model the human driving behaviors?
How do we simulate human-like behaviors?
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Outline
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W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes
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W3. & W4. Latent Driving Pattern Modeling Using A Bayesian GMM
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Part I: Background and Problem Formulation

Background

- How would the vehlcle react |n response to the Ieadlng vehlcle’?

750 15
Z 500 £ Iho
D]

%250

Observations at time ¢
[S(t),v(t)’ Av(*)]

—— Leader (real)
—— Follower (real)
----- Follower (simulate)

30 40 50




Part I: Background and Problem Formulation

Background

- How would the vehlcle react |n response to the Ieadlng vehlcle’?

Observations at time ¢
[S(t),v(t)’ Av(*)]

L LT . L
—— Leader (real)

1 “How to follow the leader? —— Follower (real)
_____ Follower (simulate)

i.e., make decision on a'").
0 10 20 30 40 50

L time (s)

"All models are wrong, but some

?
How do we learn a good model* are useful," by George Box
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Intelligent driver model

following vehicle @ =y — v leading vehicle
g 2t g

Intelligent Driver Model (IDM) (Treiber et al. 2000)
free-flow interaction

ot = <1 i (_0)5 i (s*(v;Am)?

/ A
s*(v, Av) = sg + 81 ;—O+UT—|— 2/0\/%

vy desired speed;

. - jam ing; _

So- Jam Spacing, 0 = [vo, 50, T, v, 3]
« T:time headway; N ~ -
* . maximum acceleration; parameter set

B: comfortable deceleration rate.
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Intelligent driver model

following vehicle il el leading vehicle

IDM assumes: a(>~a1DM == Likelihood: N (a “Ha%M, o?)

Calibration by MLE: mgLXH likelihood and 6 = [vo, 50, T', v, fi]

t=1 e
parameter set

T

N 1 t .
Loss function: min Z(QBM _ 4?2

t=1



Part I: Background and Problem Formulation

Intelligent driver model

following vehicle v = U — U

IDM assumes: a® ~all), .

0.25
01 &
0
£ 0.00+
-1 — DM 3 --- Data
—— Human —— Residuals

The CF model is not accurate enough — it captures much
information, but some are still left in the residuals!

\Wk‘ k‘"‘vw‘ 5 —- :siliduals

Z.:‘ﬁ-ﬁesauali“ 0 '/\F / '\J

—— Human -0.5+ { —— Human

--- Data
—— Residuals

|
~ /(' h«\/fV'

— |IDM
' B Human

a (m/s?)

Aa (m/s?)
Aa (m/s )

a (m/s?)

0 2'0 40 60 0 20 40 60 0 20 40 60
time (s) time (s) time (s) tlme (s)
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What is missing?

Our Targets:

» How do we model the human driving behaviors?

> How do we simulate human-like behaviors?
What are the characteristics of human driving behaviors?

(@)

(@)

(@)

(@)

(@)

Memory and hysteresis;
Heterogeneity;

Stochasticity and uncertainty;
Social interaction;

Imperfect perception and delay;
Driving regime switching;
Adaptation and learning;

'\

>

In this presentation, we will address
all of these key characteristics with
the two solutions

Problem: imperfect CFMs + unmodeled information (informative residuals)
v Solution A: explicitly model the residual process
v Solution B: build a better CFM by involving more information
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Outline
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Part Il: Modeling Continuous Uncertainty in CFMs

Temporal correlations in driving behaviors

: : ds . .
following vehicle il el leading vehicle
9
Za *
Gy = 7 Gl =p> v
° e > .

- Solution A: explicitly model the residual process
o Temporally correlated errors

i.i.d. Noise (No Correlation, Constant Variance) Homoscedastic Noise (GP with RBF Kernel)

4 ! | ! 1 ||
s | 1 WD I 1L | g il
'|| '| ] “ ‘ [ ‘ I ]

N(0,0°T) N(0,X)




Part Il: Modeling Continuous Uncertainty in CFMs

Temporal correlations in driving behaviors

. . ds . .
following vehicle / il leading vehicle
“ <L
- " -
e L‘ > >

- Solution A: explicitly model the residual process
o Temporally correlated errors

temporal correlations
(captures how past behaviors influence future behaviors)
- Therefore, we assume /

a(z,t) ~|fopm(x; 0)|+Hd(t)] (Zhang et al. 2025)

/

mean car-following model

Core contribution:

Inspired by GLS, see my post From Ordinary Least Squares (OLS) to Generalized Least Squares (GLS)



https://chengyuan-zhang.github.io/posts/ols-to-gls/

Part Il: Modeling Continuous Uncertainty in CFMs

The general form of car-following models

d : :
following vehicle / di =V — U leading vehicle

¥
Y
&

We assume:  a(z, 1) ~|form(@;0)[+[0(1)|  (zhang et al. 2025)

IDM assumes: a(x,t) ~|aipm(x; Q) (Treiber et al. 2000)

Missed the temporal part |6(%)

TO-DO:
Consider §(¢) in learning/calibration;
Model 6(t+ 1)[6(¢) in simulation.



Part II: Modeling Continuous Uncertainty in CFMs — W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes

Memory-Augmented IDM (MA-IDM)

(Zhang and Sun 2024)

How to model §(¢) and (¢ + 1)|6(¢) ? g\ ID
(0)—(@)
- We assume: { ,,,,, o)

a(x,t) =

¢
O®

ferm(z; 0)

+ 5(t) -+ €,

2.7.d.

e ~ N(0,02)

Bayesian IDM assumes:

41 —

()

A1pM

_I_

i.9.d.

e, §NCONECHT?)

= a\i, 0 ~ N aipM

)

-  MA-IDM assumes:

o —

(t)

A1pM

(t)

-+

Aap

_|_

€t

mean model residuals i.i.d. error

Vector form with Multivariate Normal

= a|i, 0 ~ N(laIDM

K

_|_

2
oI

where K is a kernel matrix .

[Chengyuan Zhang and Lijun Sun. (2024). Bayesian calibration of the intelligent driver model.

IEEE Transactions on Intelligent Transportation Systems.]
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Memory-Augmented IDM (MA-IDM) (zhangand Sun 2024)

Bayesian IDM assumes:

o =aD e, o CNO0,02) = ali,8 ~ N(amp, 021)

- MA-IDM assumes:

at) = a%M + ag%, e = ali,0 ~ N(apw, K |- 021)

- residuals : -
. Gaussian processes where K is a kernel matrix .

Samples fromf=1,0=1

0.51

0.0
_0_5,
=1.01 —— IDM
’ —— Human
i 5 & B a4 0 20 40 60
Covarlan)ée matrlx time (s)
=0.3,0=
--- Data

—— Residuals

Aa (m/s?)

g 1.0
0.50

T 0.251

- 0.6

X ]

0a S = 0.00
-0.25
-0.50+

Covarlan)ée matrlx




Part I1I: Modeling Continuous Uncertainty in CFMs — W 1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes

Memory-Augmented IDM (MA-IDM) (zhangand Sun 2024)

Bayesian IDM assumes:
1.1.d.

a® =la\) e, e S N(0,02) = ali, 0 ~ N(amw, o21)

MA-IDM assumes:

a(t) = a%M —+ ag%, + € = a|z', 6 ~ N(CI,IDM, K + U?I)

Stochastic simulation for step t : where K is a kernel matrix .

1) Obtain the first term aI(]I))M‘ 4| by feeding 6, and inputs

into the IDM function;
2) Draw a sample ag%, dlag; Z;'I_l) at time ¢ from the GP

to obtain the temporally correlated information agf), g




Part II: Modeling Continuous Uncertainty in CFMs — W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes

Simulations — Stochastic Simulation (MA-IDM v.s. B-IDM)

=== Human Driver —— MA-IDM: samples —— Bayesian IDM: samples

0 10 20 30 40 \ 50 60
time (s)
gap

> MA-IDM has a better calibration result than B-IDM. Even B-IDM is
with a large noise variance, it still cannot bridge the gap (i.e., with
bad uncertainty quantification.)



Part Il: Modeling Continuous Uncertainty in CFMs

But what do we miss in the residuals? Positive correlations

N
(e

(3]
S
)

steps (0.2 s/step)

0.03
100 0.02
150 0.01

0
250

50 100 150 200 250
steps (0.2 s/step)

(a) The Empirical covariance matrix.

50

100

steps (0.2 s/step)

50 100 150 200
steps (0.2 s/step)

(¢) The RBF kernel matrix.

covariance

covariance

Negative correlations

0.04 T .
0.02r
-0.02 .
-100 -50 50 100
steps (O s/step)
(b) The empirical cqvariance function.
100

steps (0.2 s/step)
(d) The RBF kernel function.



Part Il: Modeling Continuous Uncertainty in CFMs — W2. Bayesian Dynamic Regression of CFMs with Autoregressive

Dynamic Regression Framework (Dynamic IDM)

How to model §(¢) and (¢ + 1)|6(¢) ? MML\W

° We dassume. Two random series generated by AR(4)

a(z,t) =la(z; 0) Ho(@)|He, [ ~ N (0,52

- Dynamic IDM assumes:

Autoregressive (AR) processes time (s)

a\t) = IDMf;] +el),

ey =\ parey " +paaey 4+ papey VHnY,

n N0, 07). @

ADVANTAGE: It involves rich information from several
historical steps instead of using only one step.

[Chengyuan Zhang, Wenshuo Wang, and Lijun Sun. "Calibrating car-following models via Bayesian dynamic
regression." (ISTTT25 Special Issue) Transportation Research Part C: Emerging Technologies 168 (2024): 104719.]
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Experiments — Identified AR Parameters

0.04 .

5 s " Real dat
= g 3 . Real data
z 100 0.02 .§ § 0.02
S 150 001 § ¢
n S 8 0]
$+200 0

250 -0.02 .

() ()() () (\() () 100

- Positive correlations: up to 5 s
a

Negative correlations: 5~10 s

5
*J; 50 8 [5)
P 001 £ 2 go01f
N 100 S-RET-
o © «
P 0o % 3
2. 150 °© o 0
2
200 -0.01 I ' L
50 100 150 200 -100 -50 0 50 100
steps (0.2 s/step) steps (0.2 s/step)
(e) The AR(5) covariance matrix. (f) The AR(5) covariance functions.

p = [0.874,0.580, —0.105, —0.315, —0.071]
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Stochastic Simulation (Dynamic IDM vs. MA-IDM)

== Human Driver — Dynamic IDM: samples — MA-IDM: samples -+ CRPS: Dynamic IDM -« CRPS: MA-IDM

a (m/s?)

v (m/s)

40

time (s)

(a) Truck driver #211. (b) Car driver #273.

» Dynamic IDM has much lower variances than MA-IDM,;

BYAEINICRIBL NVARSA B > MA-IDM (GP+IDM) >> Bayesian IDM > Traditional IDM

> W A P W4

Lower variance unbiased probabilistic
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Modeling Driver Heterogeneity
- Bayesian hierarchical model

Var(0,): large variance population level

(driving styles)

individual level
(driving behaviors)

BO ® OO0 ©® OO @ wow
(a) Pooled model. (b) Hierarchical model. (c) Unpooled model.
(underfitting) (overfitting)
COP IDM IDM

QRO ¢

_b—

( Drivers d € {1

.....

@

—V @

| Drivers d € {1,..., D}

o
10

&

(o)—)

| Drivers d € {1,..., D}

GP

/
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Part lll: Modeling Discrete Variability and Latent Structure in CF Behaviors

Latent Variable Modeling

- Solution B: build a better CFM by involving more information

Gaussian Mixture (W3-W59)

a(x,t) =~ x;0.,), ~
(z,1) ~ for( ) Markov Chain (W6)

Driver Response
A
Regime A

Regime B Regime C . Regime D

for(z;0B)

= Driving behaviors

3 for(z;6¢)

—— Regime-specific models

— Time

Figure: Conceptual illustration of the proposed framework.



Part Ill: Modeling Discrete Variability and Latent Structure in CF Behaviors — W3. Latent Driving Pattern Modeling Using GMR

Latent Variable Modeling — Gaussian Mixture Regression

a(x,t) ~ for(x;0,,), 2z ~ Gaussian Mixture

- IDM: parsimonious model without memory (historical information).

) (gap, speed, relative speed)

s v Av

\

t
row-wise b
vectorization B

t—2
> 3(T'+1) <j LS T+

t—=1T
~
Data matrix
(time series)
~
delay embedding providing historical information

t [Xiaoxu Chen, Chengyuan Zhang, Zhanhong Cheng, Yuang Hou, and Lijun Sun. "A bayesian
(VeC Or) gaussian mixture model for probabilistic modeling of car-following behaviors." IEEE
Transactions on Intelligent Transportation Systems 25, no. 6 (2023): 5880-5891]
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Latent Variable Modeling — Gaussian Mixture Regression

a(x,t) ~ for(x;0,,), 2z ~ Gaussian Mixture & @[’“k@
- Gaussian Mixture Model (GMM) ng
f \
me i .
e
pi,
~ Dk TN :
(t=T)
(t-T)
(t-T)
L " Av N 4
\kﬁkGR‘?’r(T-H)J EkGRS(TE)XS(T+1) }

delay embedding
(vector)
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Latent Variable Modeling — Gaussian Mixture Regression

a(x,t) ~ for(x;0,,), 2z ~ Gaussian Mixture

- Gaussian Mixture Regression (GMR) Model

_ pgt_l) _
(t—1)
- = t—1
ugt) H(m )
Mg(,rt)) | : ~ ZwkN (p’t|t—1:t—T72t|t—1:t—T)
t _
| HAy Il».gt T) g
(t=T)
T
i
conditional Gaussian distribution

delay embed Then we can do simulations!
(vector)
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Latent Variable Modeling — Gaussian Mixture Regression

a(x,t) ~ for(x;0,,), 2z ~ Gaussian Mixture

- Gaussian Mixture Model (GMM)

t

o | N\ —— Speed (leader) 5 example components

g 207 T cegetieliower) —— C5 C19 —e— C29 —e— C40 —e— C44 —e— C55

0 Spacing

w 10 je—t—t—t—x0 \ Cr— 0=

E @

§ | ; ' - - : @ 87 g1‘~: o—o—o ’é‘zo—g

& 0 50 100 150 200 250 300 g w ° S -
B C5 c19 C29 BN C40 HEE C44 Cs5 T 6 8 —rrt" 15— |

2 1.0 , 2 0\ [t o 3 ke i

g hog VS 7] = 0 & -t

5 [ -\/‘f/ ! | 41] 1 ® 101

g ﬁ\(‘ ¢ ai| O—0——t—o—p x O——f——p———0

S AT i 1 23 45 123 45 1 2 3 4 5

% \ \ i | Time step (0.2s) Time step (0.2s) Time step (0.2s)

EO 0 W \/ ....'.V‘ ‘A\\\’/,-lh ad i ..‘AM;._'_{Z.L

30 50 100 150 200 250 300 Free flow; gap closing; cruising; ...

Time step (0.2s)
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Latent Variable Modeling — Gaussian Mixture Regression

a(x,t) ~ for(x;0,,), 2z ~ Gaussian Mixture

- Gaussian Mixture Model (GMM)

Component 5 Component 19 Component 29

Vi1 V2 V3 Vg Vg5 Vg V1 V2 V3 V4 Vg Vg V1 V2 V3 V4 Vg Vg
Component 40 Component 44 Component 55




Part Ill: Modeling Discrete Variability and Latent Structure in CF Behaviors — W5. Structured Pattern Modeling Using MNMR

Latent Variable Modeling — Matrix Normal Mixture
a(x,t) = for(x;0,,), z:~ Matrix Normal Mixture
- Can we find a more efficient way to represent the big covariance matrix?

Matrix
decompOSition 01234567 .

N OO RAREWN 2SO

V1 Vo V3 V4 Vs Vg

Ek‘ = R3(T+1) X 3(T—|—1)
Overparameterization!

v U -+ v U]
Kronecker product 11_ 1.

VU =

v U - 0 U

[Chengyuan Zhang, Kehua Chen, Meixin Zhu, Hai Yang, and Lijun Sun. "Learning car-following behaviors using bayesian
matrix normal mixture regression." In 2024 |EEE Intelligent Vehicles Symposium (1V), pp. 608-613. IEEE, 2024]
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Latent Variable Modeling — Matrix Normal Mixture

- Matrix Normal Mixture Model (MNMM) @ [ kel K})

a(x,t) = for(x;0,,), z:~ Matrix Normal Mixture

(gap, speed, relative speed)

t—1
t— 2

t—1T

s v Av

N

Matrix normal distribution i€ {1,...,N} |

Data matrix

=

@ &' Sle

5

.

™ Zk ﬂ-kMN (Mka Uka Vk)

transpose

(time series)

Mean matrix: M € R3*(T+1)

3xX(T+1)
R {Uk c ]R3X3

Covariance
matrices: | v, ¢ R(THDx(T+1)

Y =V5i.U;
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Latent Variable Modeling — Matrix Normal Mixture

a(x,t) = for(x;0,,), z:~ Matrix Normal Mixture

v' Interpretability

- Matrix Normal Mixture Regression (MNMR) Model

o
o

0
1
2
3
4
5
6
7

— #6 #7 #14 #41 #59 o)
£60 1.00 95% Interval
a /\ ‘a:'; 10
© 0.75 & -
© 40 —_— 5 2
3 050 g <=
E 201 sz 5
o ozsg
S 50 100 150 200 0003 0 50 100 150 200 250 300
Time steps (0.2 s/step)
5 example components
—e— #6 #7 o #14
1.0
1 ——— 0
107s = % 05 1
) E 2 08
E e ———" B 3
5 g 00 . |F0.0
(3] o
© 6 @ > -05
._...—.—-I—I—."_.-'-. .
< 2 -05 :
(TN - =1l
2 Tempo_ral 10
25— #—a| £ 02
~ 0.5
s g 0.0
©
3
[v]
>
1N

I
o
(¥

2101 23 45 20123 45
Time steps (0.2s) Time steps (0.2s)



Part Ill: Modeling Discrete Variability and Latent Structure in CF Behaviors — W4. Quantify Interaction Intensity with GMR

Latent Variable Modeling — Quantify Interaction Intensity

a(x,t) ~ for(x;0,,), 2z ~ Gaussian Mixture

-  What is social interaction?

o A Quantifiable Definition: “A dynamic sequence of acts that mutually
consider the actions and reactions of individuals through an information

exchange process between two or more agents to maximize benefits
and minimize costs.”

[Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, and Lijun Sun. "Social interactions for autonomous driving: A review and

perspectives." Foundations and Trends® in Robotics 10, no. 3-4 (2022): 198-376.]

- How to quantify interaction intensity?

o measure to what extent the conditional probability distribution
shifts upon the leader’s actions.

I(aton, 8) = D(?(&f011|8f011, Slead *ZH?(dfoll‘Sfollv *2)7

conditional dist. f marginal dist. g

[Chengyuan Zhang, Rui Chen, Jiacheng Zhu, Wenshuo Wang, Changliu Liu, and Lijun Sun. "Interactive car-following: Matters but not
always." In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), pp. 5120-5125. IEEE, 2023]
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Latent Variable Modeling — Quantify Interaction Intensity

I(afolla 3) = D(?(&fbl”sfoll? Slead) *Z | | ?(dfOU‘SfOH’ *2)7

VO VO
conditional dist. f marginal dist. g
ID: G0 ID: 18
15 sade —Leader . 0
]:i wder [“ e ID 60 (3%)
= = Lollower = = Follower [) 4 1
=107 = 109 ' :
= = ® [nteractive samples
£ 5 L 5 . . . .
& ° & & 0.3 * Non-interactive samples
04— : 04— 0 A Random samples
x10° 10 x10° =
= 0.0 —_— Leader =5 = Leader :
f’ —_— Follower ? = Follower =
S Z05 9p)
5 0.5 3 -
= = 0.0
= 107 =
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g " :i Time (sec)
i R We can evaluate the interaction
- — s LE ] — ], intensity and sample interactive
and non-interactive cases!

n w0 0 0 W i (application: safety-critical scenario generation)
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Latent Variable Modeling — Hidden Markov Model

a(x,t) ~ fop(x;0.,), z ~ Markov Chain
- Factorial-HMM (FHMM)

Driver Response
A Markov Switching
f

Regime A

Regime B

Regime C . Regime D
Driving | || . .
Behavior

2= (47,9)
/ -

Traffic
Scenario

» Time

Scenario A Scenario B Scenario C

Y

o Markov Switching
Traffic Condition

« Markovian regime switching
- Factorial latent states =z cz={1,.... KP} x {1,..., K}

[Chengyuan Zhang, Cathy Wu, and Lijun Sun. "Markov Regime-Switching Intelligent Driver Model for Interpretable Car-
Following Behavior." Preprint (under review).]
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Latent Variable Modeling — Hidden Markov Model

a(x,t) ~ fop(x;0.,), z ~ Markov Chain

-
S S
kBl e {1,..., KB} /N,D}
e
@

Posterior f arg max p(z1.7, Q| Y0y T1oT)

21:T,

— arg ma}é p(yl;TywlzT | Zl:Taﬂ) 'p(zl:T) p(ﬂ)

=arg max | [Likelihood  )-)(=1) | | v(=: Priors. p(x) - p(o")
2O ppm ) 2N
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Latent Variable Modeling — Hidden Markov Model

a(x,t) ~ fop(x;0.,), z ~ Markov Chain

- FHMM-IDM: Identified Driving Regimes

5 Lane 3
-50 [B] //::,/ ////{ // //’ // 1 1E 1.0 Q
w12 =279 000 R [— Averaged IDM == Human Driver == FHMM-IDIVI] o
E 150 G LI ) o8 =
s 200 7 e -// 7 ,’-/////,/'/ 7/ E ' 8
/b=y s o
s & _,//// / 5 0 068
-350 7 4 T 0]
400 / / g/ a 04 E
2000 2500 3000 3500 4000 4500 5000 5500 6000 6 (—ju
0 § '1 02 E
£ g S
P zt[ | 0.0©°

E -150

§ 20 . 1.0 o
§-25o \%40_ -— 1) — —AU] %
-300 a 0.8 E
-350 4] S
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Latent Variable Modeling — Hidden Markov Model

a(x,t) ~ fop(x;0.,), z ~ Markov Chain

- Solution B: build a better CFM by involving more information
v This model: Memory; Heterogeneity; Stochasticity; Regime switching; Adaptation;

Feature/Model IDM Bayesian IDM GMM HMM HMM-GMM HDP-HMM NN (LSTM) FHMM-IDM (Ours)
Model Type Deterministic Probabilistic Probabilistic = Probabilistic Probabhilistic Probabilistic Deep Learning Probabilistic
Adaptivity! X X X v v v v v
Latent Behavior Type? X X Discrete Discrete Discrete Discrete Continuous Discrete
Latent Mode Cardinality® - - Fixed Fixed Fixed Infinite Fixed Factorial Fixed
Stochasticity X v v v v v Implicit v
Parameter Estimation? Heuristic MCMC EM/MCMC EM/MCMC EM/MCMC EM/MCMC  Gradient descent MCMC
Interpretability® High High Moderate Moderate Moderate Moderate Low High
Traffic Context Modeling® X X v (features) X v (features) v (implicit) v (learned) v (explicit)
Heterogeneity Handling? Poor Moderate Moderate Moderate Moderate Excellent Excellent Excellent
Data-driven Flexibility® Low Moderate Moderate Moderate Moderate High High High
Training Complexity® Low Moderate Low Moderate Moderate/High High High High

IDM: Treiber et al. (2000); Treiber and Helbing (2003); Treiber et al. (2006); Punzo et al. (2021); Bayesian IDM: Zhang and Sun (2024); Zhang et al. (2024b); GMM: Chen
et al. (2023); Zhang et al. (2023, 2024a); HMM: Sathyanarayana et al. (2008); Aoude et al. (2012); Gadepally et al. (2013); Vaitkus et al. (2014); HMM-GMM: Wang et al.
(2018b,a); HDP-HMM: Taniguchi et al. (2014); Zhang et al. (2021); Zou et al. (2022); Neural Networks: Wang et al. (2017); Zhu et al. (2018); Mo et al. (2021); Yao et al.
(2025); Zhou et al. (2025);

LCan the model dynamically adjust to changing behavior?

2 Type of latent representation: discrete (mode switches) or continuous (trajectory embeddings).
3 Whether the number of latent modes is fized a priori or inferred.

4 How model parameters are estimated: EM, gradient descent, MCMC, etc.

5Can latent states or parameters be interpreted as meaningful driving behavior?

6 Whether traffic context (e.g., relative speed, gap) is explicitly used in latent modeling.

7 Ability to capture driver-specific variation (e.g., hierarchical priors, class mizture).

8 Model’s ability to fit and learn from diverse and high-dimensional driving datasets.

9 Qverall training/inference complexity: data requirements, convergence cost, parallelism.
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Part IV: Deep Probabilistic Models for Complex Driving Behavior — W7. Deep Model with Structured Uncertainty

Nonstationary temporal correlations

Solution A assumes:

2.7.d.

a(z,t) =|ferm(x; @)1 H(E)|+|e | €2 ~ N(O, 062)

MA-IDM assumes:

K {Ho2I)

€

alt) = CL%BM + ag)P +H €4 = alt, 0 ~ N(laIDM

Homoscedasticity assumption with a stationary kernel. (inappropriate)

Nonstationary model assumes:

at” =|an [ Hadh e = ali, Onn ~ N (ann K USII)

Heteroscedasticity assumption with a nonstationary kernel (Gibbs kernel)

aivbs(t, 15 A) = “(t)a(t/)\/ z(?)i(tf%z)z o <_€(t()t2 _+t2t’)2)

[Chengyuan Zhang, Zhengbing He, Cathy Wu, and Lijun Sun. (2025). Stochastic Modeling of Car-
Following Behaviors with Nonstationary Temporal Correlations. Preprint (under review).]
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Part IV: Deep Probabilistic Models for Complex Driving Behavior — W9. Stochastic Calibration via Simulation-Based Inference

Stochastic Calibration via Simulation-Based Inference

Posterior over
_ T
0= [UOJ So» Th' Ainax: b, Je]

6 ~qy(6]c™)

I
/ Neural Posterior \

/ Observed Trajectories \ ﬁ ransformer Encoder

™

a(mis?)

v (mIS

Estimator
g M zi ~ N(0,1)
z ==>
0 time (s) 80 Local-Global gr(-)
Multi-Head
x™ = (hgn),"' hr(r")) € R3xT Attention Irk-1()
hgn) _ [St(n)’ Vgn), A vt(n)]T s

\_ W 900
=

[ 4p (BlcM)—=
( Embedded J \ t /

L B —'[ Context Vector ¢ ]

Amortized SBI: input a trajectory, get an
instant posterior over model parameters.

(likelihood-free calibration for black-box simulators, e.g., SUMO)

[Menglin Kong, Chengyuan Zhang, Lijun Sun. "Stochastic Calibration of Car-Following Models via Simulation-Based Inference." To be presented
on TRBAM 2026. ] (Unpublished Work)
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Part V: Discussion and Conclusions

« Challenge: Traditional models learn a one-to-one mapping
for : (s¢, Ave, v;) — ay (deterministic) X
but real drivers induce a one-to-many mapping with uncertainty

for (s, Avg,v) = {alV,al?, ...} (stochastic) ¢

Y

« Solutions:
(1) Explicit Uncertainty Modeling (continuous variability) | Solution A | )

ar ~ fCF (iL‘t; 9) —F 5257 (Zhang and Sun 2024, Zhang et al. 2024, Zhang et al. 2025a)

Table 1: Modeling of temporal correlations in my previous work.
Reference ‘ Jfor(x:;0) ’ o

Zhang and Sun (2024) | IDM Gaussian processes (GPs)
Zhang et al. (2024) IDM Autoregressive (AR) processes
Zhang et al. (2025a) NN nonstationary GPs

[Chengyuan Zhang and Lijun Sun. (2024). Bayesian calibration of the intelligent driver model. IEEE Transactions on Intelligent Transportation Systems.]
[Chengyuan Zhang, Wenshuo Wang, and Lijun Sun. Calibrating car-following models via Bayesian dynamic regression. (ISTTT25 Special Issue)
Transportation Research Part C: Emerging Technologies 168 (2024): 104719.]

[Chengyuan Zhang, Zhengbing He, Cathy Wu, and Lijun Sun. (2025a). When Context Is Not Enough: Modeling Unexplained Variability in Car-Following

Behavior. arXiv preprint arXiv:2507.07012 (under review).] } ”
@ Latent Variable Modeling (discrete variability) Solution B
Gaussian Mixture (i.i.d.)
a; = fop(x;0,,), 2t ~ ~ (Chen etal. 2023, Zhang et al. 2024)
Markov Chain (temporal dependence)

(Zhang et al. 2025b)

[Xiaoxu Chen, Chengyuan Zhang, Zhanhong Cheng, Yuang Hou, and Lijun Sun. A bayesian gaussian mixture model for probabilistic modeling of car-
following behaviors. IEEE Transactions on Intelligent Transportation Systems 25, no. 6 (2023): 5880-5891.]

[Chengyuan Zhang, Kehua Chen, Meixin Zhu, Hai Yang, and Lijun Sun. Learning car-following behaviors using bayesian matrix normal mixture
regression. In 2024 |EEE Intelligent Vehicles Symposium (1V), pp. 608-613. IEEE, 2024.]

[Chengyuan Zhang, Cathy Wu, and Lijun Sun. (2025b). Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior.
arXiv preprint arXiv:2506.14762 (2025b). (under review) .] y

sJoje|nwis ayjlj-uewny sjgejaidiaiul ‘onseyoo)s




Part V: Discussion and Conclusions

 Outcome: stochastic, interpretable human-like simulators
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(c) Dense traffic simulation with dynamic IDM (p = 4).



Part V: Discussion and Conclusions

Other Interactive Scenarios (2019-2021)
(a) Roundabout & Intersection
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[Wenshuo Wang, Chengyuan Zhang, Pin Wang, and Ching-Yao Chan. "Learning representations for multi-vehicle spatiotemporal
interactions with semi-stochastic potential fields." In 2020 IEEE Intelligent Vehicles Symposium (1V), pp. 1935-1940. IEEE, 2020.]

(b) Lane Changing

Pattern3

-440 420 400  -380 - 440 420 400 -380  -360

[Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, and Jungiang Xi. "Spatiotemporal learning of multivehicle interaction
patterns in lane-change scenarios." IEEE Transactions on Intelligent Transportation Systems 23, no. 7 (2021): 6446-6459.]
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Other Interactive Scenarios (2019-2021)

(c) Unsignalized Intersection (d) On-ramp merge in
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[Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, and Ding
Zhao. "A general framework of learning multi-vehicle interaction
patterns from video." In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 4323-4328. |IEEE, 2019.]

[Unpublished Work.]




Part V: Discussion and Conclusions

Discussion and takeaways

- Human Driving Behaviors Modeling and Stochastic Simulations

o Proper assumptions are important.
Residuals are correlated --- we cannot use i.i.d. error assumption;
Heteroscedasticity assumption with a nonstationary kernel,

o Always think about “What is missing?”
Positive / negative correlations;
Temporal structure;

o Social interaction is complex; even the simplest car-following
behaviors remain under investigation.
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Related Publications
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12.
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Chengyuan Zhang, Zhengbing He, Cathy Wu, and Lijun Sun. "When Context Is Not Enough: Modeling Unexplained Variability in Car-Following
Behavior." arXiv preprint arXiv:2507.07012 (2025).(NN with nonstationary GP)

Chengyuan Zhang, Cathy Wu, and Lijun Sun. "Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following
Behavior." arXiv preprint arXiv:2506.14762 (2025). (driving patterns with HMM)

Chengyuan Zhang, and Lijun Sun. "Bayesian calibration of the intelligent driver model." IEEE Transactions on Intelligent Transportation
Systems 25, no. 8 (2024): 9308-9320. (IDM with GP)

Chengyuan Zhang, Wenshuo Wang, and Lijun Sun. "Calibrating car-following models via Bayesian dynamic regression." (ISTTT25 Special
Issue) Transportation Research Part C: Emerging Technologies 168 (2024): 104719. (IDM with AR)

Chengyuan Zhang, Kehua Chen, Meixin Zhu, Hai Yang, and Lijun Sun. "Learning car-following behaviors using bayesian matrix normal mixture
regression." In 2024 |IEEE Intelligent Vehicles Symposium (1V), pp. 608-613. IEEE, 2024. (Mixture model with temporal structure)

Chengyuan Zhang, Rui Chen, Jiacheng Zhu, Wenshuo Wang, Changliu Liu, and Lijun Sun. "Interactive car-following: Matters but not always."
In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), pp. 5120-5125. IEEE, 2023. (quantify interactions)

Xiaoxu Chen, Chengyuan Zhang, Zhanhong Cheng, Yuang Hou, and Lijun Sun. "A bayesian gaussian mixture model for probabilistic modeling
of car-following behaviors." IEEE Transactions on Intelligent Transportation Systems 25, no. 6 (2023): 5880-5891. (driving patterns with GMM)

Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, and Lijun Sun. "Social interactions for autonomous driving: A review and
perspectives." Foundations and Trends® in Robotics 10, no. 3-4 (2022): 198-376. (review of social interactions)

Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, and Jungiang Xi. "Spatiotemporal learning of multivehicle interaction patterns in lane-
change scenarios." IEEE Transactions on Intelligent Transportation Systems 23, no. 7 (2021): 6446-6459. (driving patterns of lane-change)

Wenshuo Wang, Chengyuan Zhang, Pin Wang, and Ching-Yao Chan. "Learning representations for multi-vehicle spatiotemporal interactions
with semi-stochastic potential fields." In 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1935-1940. IEEE, 2020. (intersection & roundabout)

Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, and Ding Zhao. "A general framework of learning multi-vehicle interaction patterns from
video." In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 4323-4328. IEEE, 2019. (driving patterns of intersection)

Menglin Kong, Chengyuan Zhang, Lijun Sun. "Stochastic Calibration of Car-Following Models via Simulation-Based Inference." To be
presented on TRBAM 2026. (SBI for calibration)

Code:
https://github.com/Chengyuan-Zhang/IDM_Bayesian_Calibration
https://github.com/Chengyuan-Zhang/Gaussian_Velocity_Field
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