

From Micro Interactions to Traffic Flow: Stochastic Driver Models for Realistic **Traffic Simulation**

Chengyuan Zhang (enzozcy@gmail.com)

Ph.D. Candidate (advised by Prof. Lijun Sun)

Department of Civil Engineering

McGill University

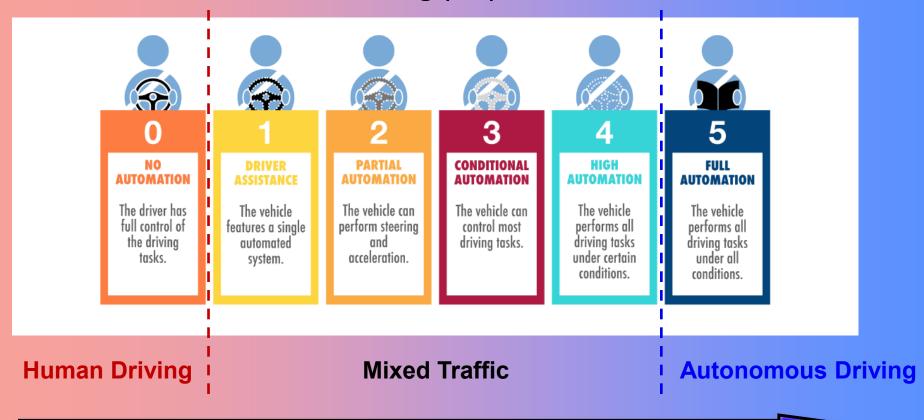
https://chengyuan-zhang.github.io/

Oct. 22, 2025 MIT Wu Lab (online)

About me

- Smart Transportation Lab at McGill University
- Research interests:
 - Traffic flow theory;
 - Stochastic simulation;
 - Human behavior modeling;
 - Bayesian learning;
 - Multi-agent interaction.
- My research focuses on Bayesian inference, spatiotemporal modeling, traffic flow theory, and multi-agent interaction modeling within intelligent transportation systems, with an emphasis on bridging the gap between theoretical modeling and practical traffic simulation through advanced statistical techniques with appropriate uncertainty quantification.
- My motivation lies in advancing the understanding of human driving behaviors to improve microscopic traffic simulations, ultimately contributing to safer and more efficient transportation systems.

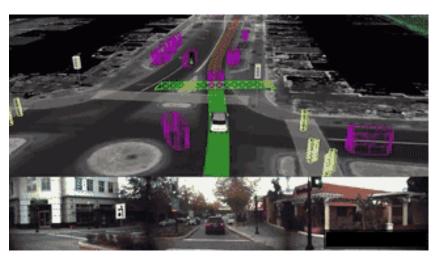
Levels of Autonomous Driving (AD)



"HD and AD will coexist for several decades... It is still necessary to learn and model HD."

- Human Driving Modeling (HDM)
 - from data to policy (world as it is): heterogeneity, uncertainty, ...
- Autonomous Driving Modeling (ADM)
 - 。 from **goal** to **policy <mark>(world as it should be)</mark>: design reward and loss …**
- HDM is <u>descriptive</u> and <u>generative</u>. ADM is <u>prescriptive</u> and <u>normative</u>.

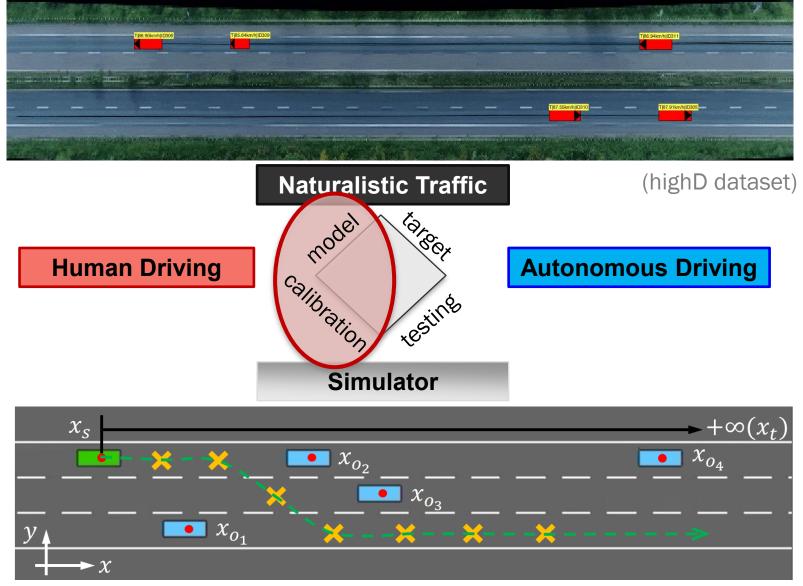
Human Driving (<u>descriptive</u>): "How do humans drive?"



Autonomous Driving (*prescriptive*): "How should an AV drive?"

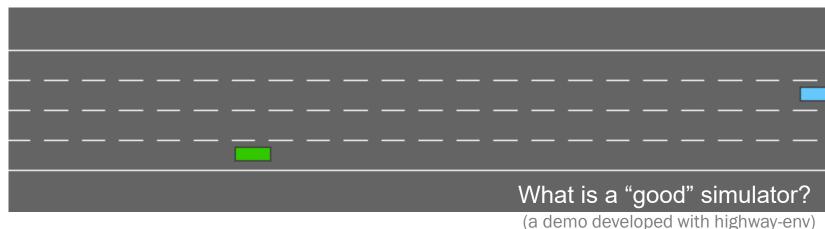
Aspect	HDM — world as it is	ADM — world as it should be
Concepts	Explains and generates human actions with memory and heterogeneity. Descriptive, stochastic policy $\pi_H(a \mid x_{0:t}, z)$	Under explicit objectives and constraints. Prescriptive, optimal policy $\pi_{AV}(x) = \arg\min_a J(x,a)$
Applications	Realistic human agents in simulators; traffic flow studies; policy impact via micro-to-macro scaling; scenario discovery	On-road autonomy; planning and control; safety envelopes; mission success
Evaluation metrics	Human-likeness, Social responsiveness, Flow realism	Safety, Comfort, Rule and right-of- way compliance, Risk margin
Role in sim	Makes the world believable	Succeeds within that world

HDM is judged by <u>human-likeness</u> and <u>realism</u> of the world it creates. **ADM** is judged by <u>safety, rule compliance, comfort,</u> <u>and reliability</u> inside that world.



(a scene developed with highway-env)

- The goal of traffic simulations:
 - Past: reproduce traffic phenomenon.
 - Future: support the development and test of Autonomous Driving:
 - Reinforcement learning for traffic control/management;
 - Human-in-the-loop simulations;
 - Safety, predictability, and uncertainty;



(a demo developed with highway (

A realistic traffic simulator is not just a convenience but a necessity!

How do we model the human driving behaviors? How do we simulate human-like behaviors?

Outline

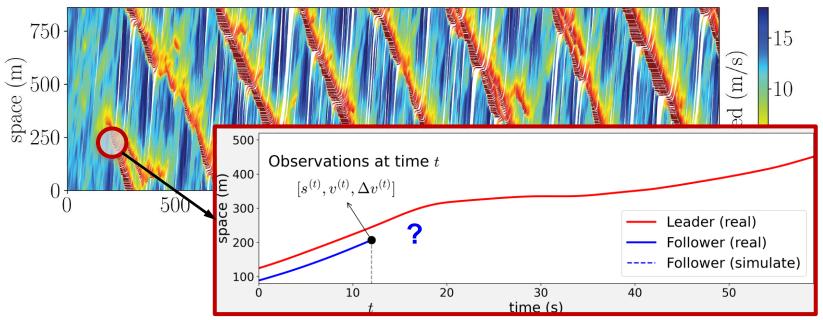
- Background and Problem Formulation
- II. Modeling Continuous Uncertainty in Car-Following (CF) Behaviors
 - W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes
 - W2. Bayesian Dynamic Regression of CFMs with Autoregressive Errors
- III. Modeling Discrete Variability and Latent Structure in CF Behaviors
 - W3. & W4. Latent Driving Pattern Modeling Using A Bayesian GMM
 - W5. Structured Driving Pattern Modeling Using Matrix Normal Mixture Model
 - W6. Regime Switching Models for Interpretable Behavioral Segmentation
- IV. Deep Probabilistic Models for Complex Driving Behavior
 - W7. Neural Models with Structured Temporal Uncertainty
 - W8. Mapping the Subjective Risk Landscape of Continuous Human Action
 - W9. Stochastic Calibration of CFMs via Simulation-Based Inference
- v. Discussion and Conclusions

Outline

- Background and Problem Formulation
- II. Modeling Continuous Uncertainty in Car-Following (CF) Behaviors
 - W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes
 - W2. Bayesian Dynamic Regression of CFMs with Autoregressive Errors
- III. Modeling Discrete Variability and Latent Structure in CF Behaviors
 - W3. & W4. Latent Driving Pattern Modeling Using A Bayesian GMM
 - W5. Structured Driving Pattern Modeling Using Matrix Normal Mixture Model
 - W6. Regime Switching Models for Interpretable Behavioral Segmentation
- IV. Deep Probabilistic Models for Complex Driving Behavior
 - W7. Neural Models with Structured Temporal Uncertainty
 - W8. Mapping the Subjective Risk Landscape of Continuous Human Action
 - W9. Stochastic Calibration of CFMs via Simulation-Based Inference
- v. Discussion and Conclusions

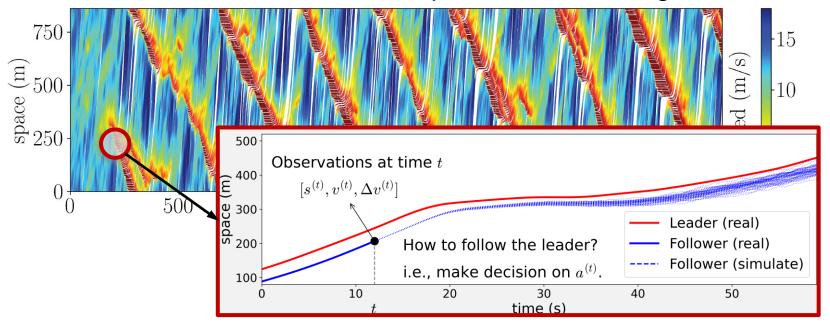
Background

How would the vehicle react in response to the leading vehicle?



Background

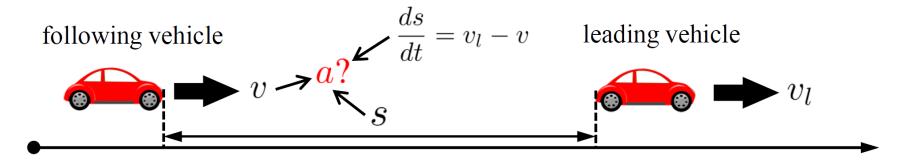
How would the vehicle react in response to the leading vehicle?



How do we learn a good model?

"All models are wrong, but some are useful," by George Box

Intelligent driver model



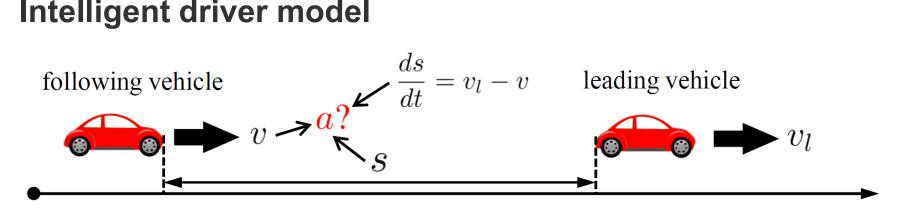
Intelligent Driver Model (IDM) (Treiber et al. 2000)

$$a_{ ext{IDM}} = lpha \left(1 - \left(rac{v}{v_0}
ight)^{\delta} - \left(rac{s^*(v, \Delta v)}{s}
ight)^2
ight)$$
 $s^*(v, \Delta v) = s_0 + s_1 \sqrt{rac{v}{v_0}} + v \, T + rac{v \, \Delta v}{2 \, \sqrt{lpha \, eta}}$

- v_0 : desired speed;
- s_0 : jam spacing;
- T: time headway;
- α: maximum acceleration;
- β: comfortable deceleration rate.

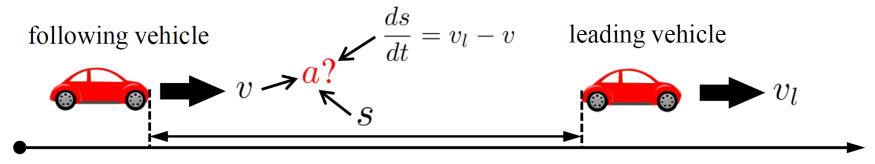
$$\boldsymbol{\theta} = \underbrace{[v_0, s_0, T, \alpha, \beta]}_{\text{parameter set}}$$

Intelligent driver model

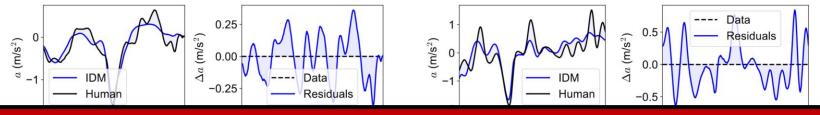


- IDM assumes: $a^{(t)} \approx a_{\mathrm{IDM}}^{(t)}$. Likelihood: $\mathcal{N}(\hat{a}^{(t)}|a_{\mathrm{IDM}}^{(t)},\sigma_{\epsilon}^2)$
- Calibration by MLE: $\max_{\boldsymbol{\theta}} \prod_{i=1}^{n} \text{likelihood}$ and $\boldsymbol{\theta} = \underbrace{[v_0, s_0, T, \alpha, \beta]}$ parameter set
- Loss function: $\min_{\boldsymbol{\theta}} \frac{1}{T} \sum_{i=1}^{T} (a_{\text{IDM}}^{(t)} \hat{a}^{(t)})^2$

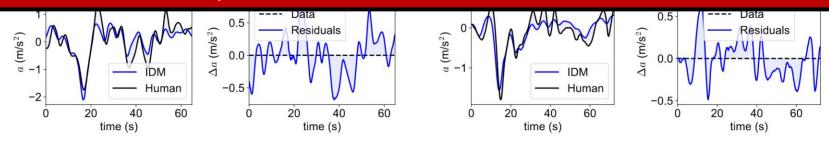
Intelligent driver model



• IDM assumes: $a^{(t)} \approx a^{(t)}_{\mathrm{IDM}}$. Let's visualize the residuals $a^{(t)} - a^{(t)}_{\mathrm{IDM}}$.



The CF model is not accurate enough — it captures much information, but **some are still left in the residuals**!



What is missing?

Our Targets:

- How do we model the human driving behaviors?
- How do we simulate human-like behaviors?

What are the characteristics of human driving behaviors?

- Memory and hysteresis;
- Heterogeneity;
- Stochasticity and uncertainty;
- Social interaction;
- Imperfect perception and delay;
- Driving regime switching;
- Adaptation and learning;

0 ...

In this presentation, we will address all of these key characteristics with the two solutions

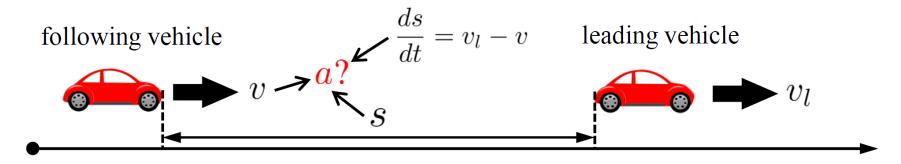
Problem: imperfect CFMs + unmodeled information (informative residuals)

- ✓ Solution A: explicitly model the residual process
- ✓ Solution B: build a better CFM by involving more information.

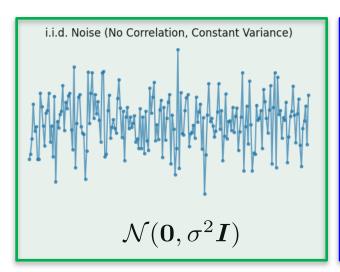
Outline

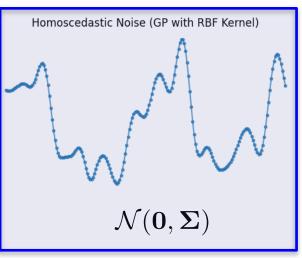
- I. Background and Problem Formu Enhanced simulation with Solution A
- II. Modeling Continuous Uncertainty in Car-Following (CF) Behaviors
 - W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes
 - W2. Bayesian Dynamic Regression of CFMs with Autoregressive Errors
- III. Modeling Discrete Variability and Latent Structure in CF Behaviors
 - W3. & W4. Latent Driving Pattern Modeling Using A Bayesian GMM
 - W5. Structured Driving Pattern Modeling Using Matrix Normal Mixture Model
 - W6. Regime Switching Models for Interpretable Behavioral Segmentation
- IV. Deep Probabilistic Models for Complex Driving Behavior
 - W7. Neural Models with Structured Temporal Uncertainty
 - W8. Mapping the Subjective Risk Landscape of Continuous Human Action
 - W9. Stochastic Calibration of CFMs via Simulation-Based Inference
- v. Discussion and Conclusions

Temporal correlations in driving behaviors

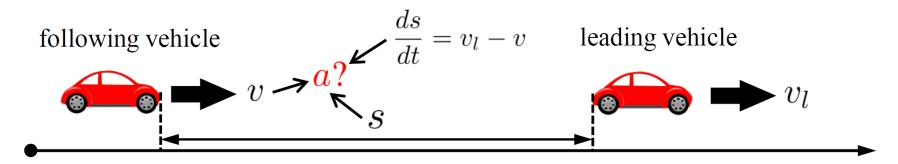


- Solution A: explicitly model the residual process
 - Temporally correlated errors

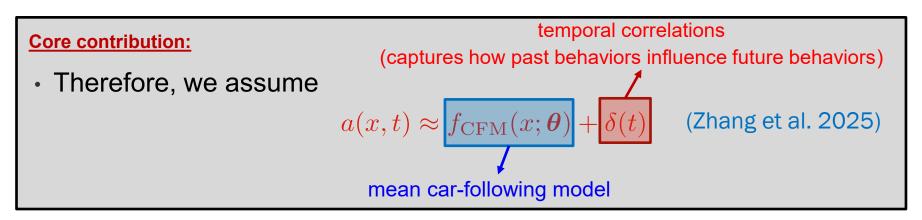




Temporal correlations in driving behaviors

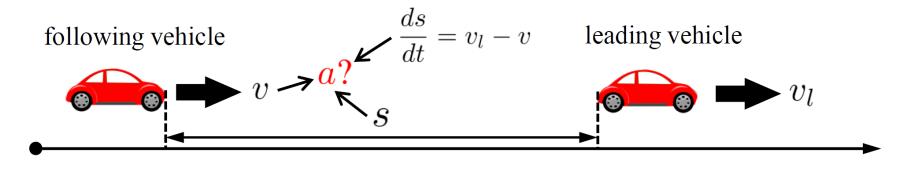


- Solution A: explicitly model the residual process
 - Temporally correlated errors



Inspired by GLS, see my post From Ordinary Least Squares (OLS) to Generalized Least Squares (GLS)

The general form of car-following models



- We assume: $a(x,t) \approx f_{\text{CFM}}(x; \boldsymbol{\theta}) + \delta(t)$ (Zhang et al. 2025)
- IDM assumes: $a(x,t) pprox a_{\mathrm{IDM}}(x;m{ heta})$. (Treiber et al. 2000)

Missed the temporal part $\delta(t)$

TO-DO:

- Consider $\delta(t)$ in learning/calibration;
- Model $\delta(t+1)|\delta(t)$ in simulation.

Memory-Augmented IDM (MA-IDM)

(Zhang and Sun 2024)

Drivers $d \in \{1, \dots, D\}$

How to model $\delta(t)$ and $\delta(t+1)|\delta(t)$?

We assume:

$$a(x,t) = f_{\text{CFM}}(x; \boldsymbol{\theta}) + \delta(t) + \epsilon_t, \ \epsilon_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2)$$

Bayesian IDM assumes:

$$a^{(t)} = \boxed{a_{ ext{IDM}}^{(t)}} + \boxed{\epsilon_t, \; ext{incorrect}^{i.i.d.} ext{vect} \sigma_\epsilon^2)} \quad \Rightarrow oldsymbol{a} | oldsymbol{i}, oldsymbol{ heta} \sim \mathcal{N}(oldsymbol{a}_{ ext{IDM}}, oldsymbol{\sigma}_\epsilon^2 oldsymbol{I})$$

MA-IDM assumes:

 $a^{(t)} = a_{\text{IDM}}^{(t)} + a_{\text{GP}}^{(t)} + \epsilon_t$

mean model residuals i.i.d. error

$$egin{aligned} \Rightarrow m{a} | m{i}, m{ heta} \sim \mathcal{N}(m{a}_{ ext{IDM}}, m{K} + m{\sigma}_{\epsilon}^2 m{I}) \end{aligned}$$

Vector form with Multivariate Normal

where **K** is a kernel matrix.

[Chengyuan Zhang and Lijun Sun. (2024). Bayesian calibration of the intelligent driver model. IEEE Transactions on Intelligent Transportation Systems.]

Memory-Augmented IDM (MA-IDM) (Zhang and Sun 2024)

Bayesian IDM assumes:

$$a^{(t)} = a_{\mathrm{IDM}}^{(t)} + \epsilon_t, \ \epsilon_t \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2) \qquad \Rightarrow \boldsymbol{a} | \boldsymbol{i}, \boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{a}_{\mathrm{IDM}}, \sigma_{\epsilon}^2 \boldsymbol{I})$$

MA-IDM assumes:

$$a^{(t)} = a_{\mathrm{IDM}}^{(t)} + a_{\mathrm{GP}}^{(t)} + \epsilon_t \qquad \Rightarrow \boldsymbol{a}|\boldsymbol{i}, \boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{a}_{\mathrm{IDM}}, \boldsymbol{K} + \sigma_{\epsilon}^2 \boldsymbol{I})$$
residuals where \boldsymbol{K} is a kernel matrix.

time (s)

Gaussian processes

1

3

2

 $\ell = 1, \ \sigma = 1$ Samples from $\ell = 1$, $\sigma = 1$ 0.0 $a (m/s^2)$ \times 0 0.2 Human 20 40 60 Covariance matrix time (s) $\ell = 0.3, \, \sigma = 1$ Samples from $\ell = 0.3$, $\sigma = 1$ 0.50 Data Residuals Δa (m/s²) 0.25 -0.25-0.5020 40

Memory-Augmented IDM (MA-IDM) (Zhang and Sun 2024)

Bayesian IDM assumes:

$$a^{(t)} = a_{\text{IDM}}^{(t)} + \epsilon_t, \ \epsilon_t \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2) \qquad \Rightarrow \boldsymbol{a} | \boldsymbol{i}, \boldsymbol{\theta} \sim \mathcal{N}(\boldsymbol{a}_{\text{IDM}}, \sigma_{\epsilon}^2 \boldsymbol{I})$$

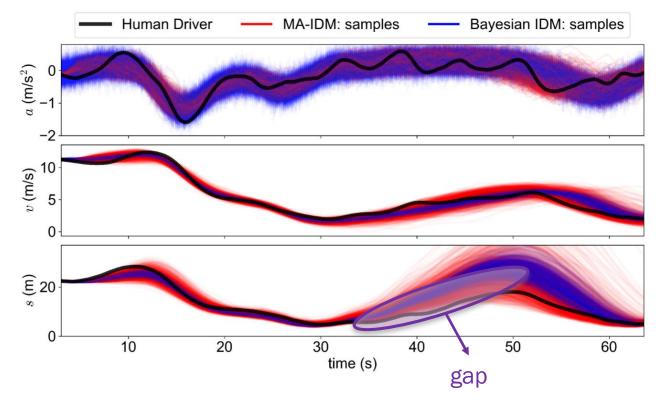
MA-IDM assumes:

$$a^{(t)} = a_{\text{IDM}}^{(t)} + a_{\text{GP}}^{(t)} + \epsilon_t \implies a|i, \theta \sim \mathcal{N}(a_{\text{IDM}}, K + \sigma_{\epsilon}^2 I)$$

Stochastic simulation for step t:

- where **K** is a kernel matrix.
- 1) Obtain the first term $a_{\text{IDM},d}^{(t)}$ by feeding θ_d and inputs
- into the IDM function; 2) Draw a sample $a_{GP,d}^{(t)} | \boldsymbol{a}_{GP,d}^{(t-T:t-1)}$ at time t from the GP to obtain the temporally correlated information $a_{GP}^{(t)}$;

Simulations – Stochastic Simulation (MA-IDM v.s. B-IDM)



MA-IDM has a better calibration result than B-IDM. Even B-IDM is with a large noise variance, it still cannot bridge the gap (i.e., with bad uncertainty quantification.)

(c) The RBF kernel matrix.

But what do we miss in the residuals? **Positive correlations Negative correlations** 0.04 0.03 steps (0.2 s/step) 50 Real data covariance covariance 0.02 0.02 100 150 0.01 200 0 250 -0.0250 100 150 200 250 -100-50 50 100 steps (0.2 s/step) steps (0.2 s/step) (b) The empirical covariance function. (a) The Empirical covariance matrix. 0.04 steps (0.2 s/step) **MA-IDM** 0.03 e 0.03 50 100 Positive correlations: 4~5 s 150 200 100 150 200 50 -100-50 50 100 steps (0.2 s/step) steps (0.2 s/step)

(d) The RBF kernel function.

Dynamic Regression Framework (Dynamic IDM)

How to model $\,\delta(t)\,$ and $\,\delta(t+1)|\delta(t)\,$?

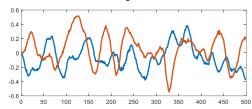
We assume:

$$a(x,t) = a(x; \boldsymbol{\theta}) + \delta(t) + \epsilon, \quad \epsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2)$$

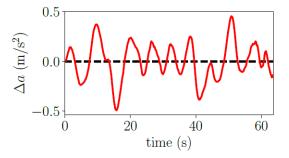
Dynamic IDM assumes:

Autoregressive (AR) processes

$$\begin{aligned} a_d^{(t)} &= \overline{\text{IDM}_d^{(t)}} + \varepsilon_d^{(t)}, \\ \varepsilon_d^{(t)} &= \rho_{d,1} \varepsilon_d^{(t-1)} + \rho_{d,2} \varepsilon_d^{(t-2)} + \dots + \rho_{d,p} \varepsilon_d^{(t-p)} + \overline{\eta_d^{(t)}}, \\ \eta^{(t)} &\stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_\eta^2). \end{aligned}$$

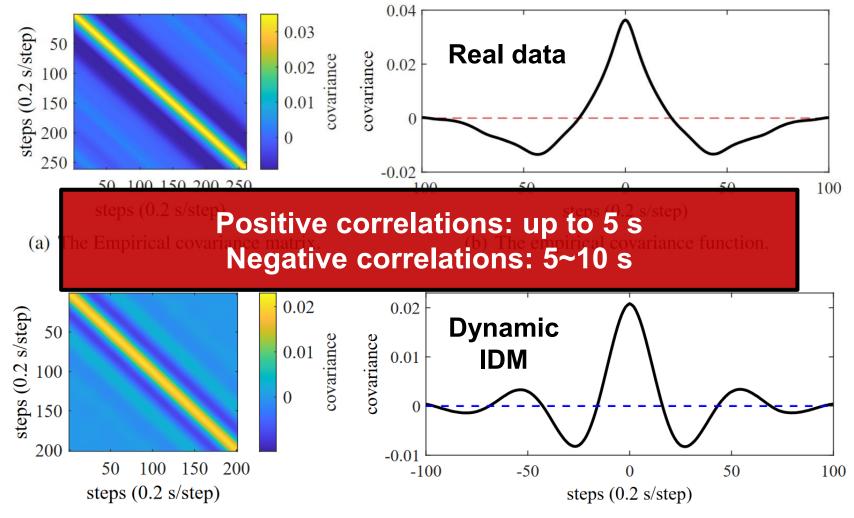


Two random series generated by AR(4)



ADVANTAGE: It involves rich information from several historical steps instead of using only one step.

Experiments – Identified AR Parameters

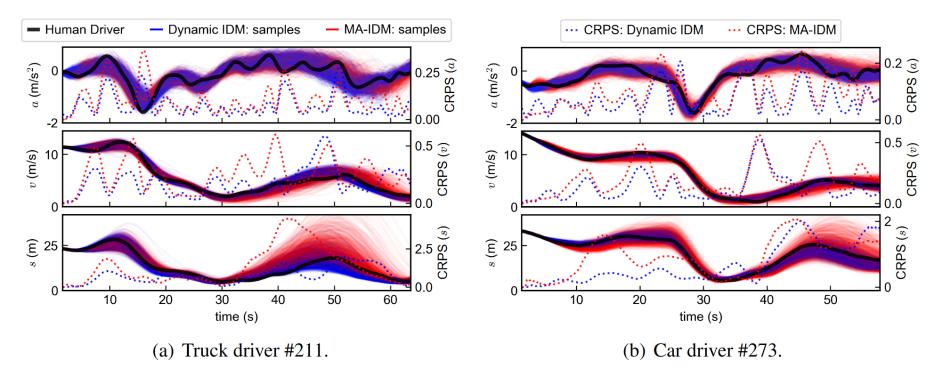


(e) The AR(5) covariance matrix.

(f) The AR(5) covariance functions.

$$\rho = [0.874, 0.580, -0.105, -0.315, -0.071]$$

Stochastic Simulation (Dynamic IDM vs. MA-IDM)

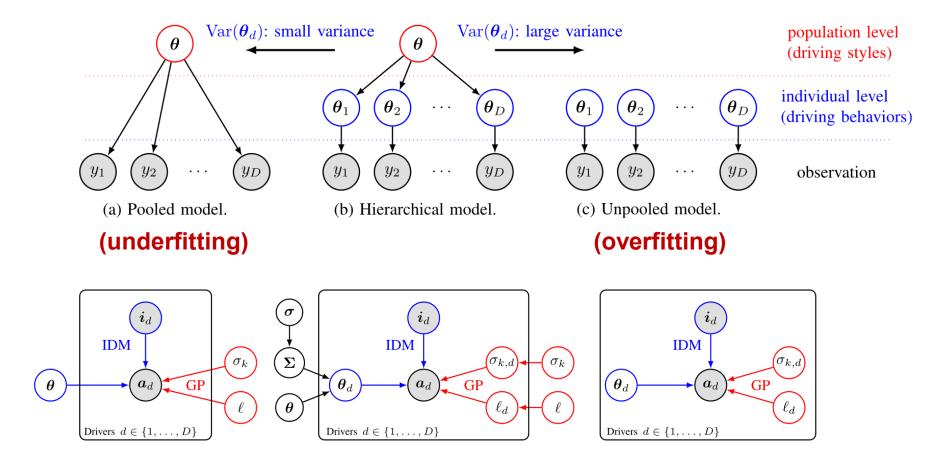


Dynamic IDM has much lower variances than MA-IDM;

Dynamic IDM (AR+IDM) > MA-IDM (GP+IDM) >> Bayesian IDM > Traditional IDM

Modeling Driver Heterogeneity

Bayesian hierarchical model



Outline

- Background and Problem Formulation
- **II.** Modeling Continuous Uncertainty in Car-Following (CF) Behaviors
 - W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes
 - W2. Bayesian Dynamic Regression o Improved interpretability with Solution B
- III. Modeling Discrete Variability and Latent Structure in CF Behaviors
 - W3. & W4. Latent Driving Pattern Modeling Using A Bayesian GMM
 - W5. Structured Driving Pattern Modeling Using Matrix Normal Mixture Model
 - W6. Regime Switching Models for Interpretable Behavioral Segmentation
- IV. Deep Probabilistic Models for Complex Driving Behavior
 - W7. Neural Models with Structured Temporal Uncertainty
 - W8. Mapping the Subjective Risk Landscape of Continuous Human Action
 - W9. Stochastic Calibration of CFMs via Simulation-Based Inference
- v. Discussion and Conclusions

Latent Variable Modeling

Solution B: build a better CFM by involving more information

$$a(x,t) \approx f_{\text{CF}}(x; \boldsymbol{\theta}_{z_t}), \ z_t \sim \begin{cases} \text{Gaussian Mixture} & \text{(W3-W5)} \\ \text{Markov Chain} & \text{(W6)} \end{cases}$$

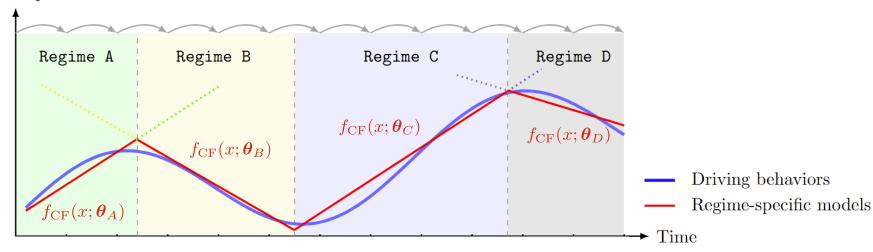
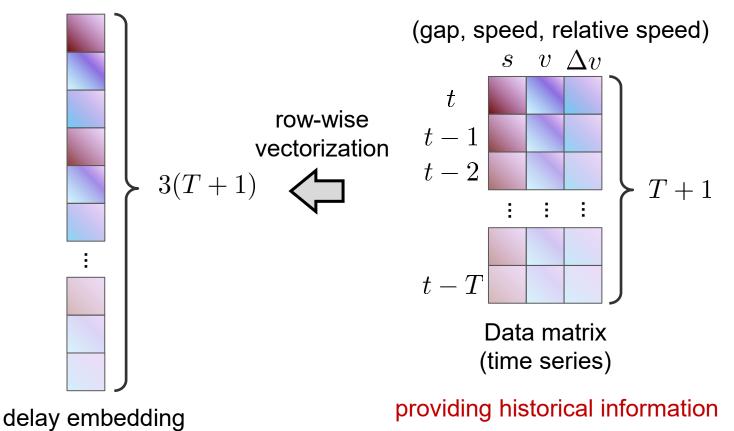


Figure: Conceptual illustration of the proposed framework.

$$a(x,t) \approx f_{\rm CF}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Gaussian Mixture}$$

IDM: parsimonious model without memory (historical information).



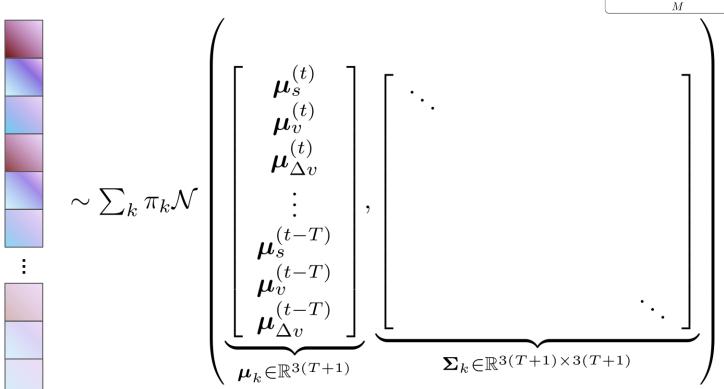
(vector)

[Xiaoxu Chen, Chengyuan Zhang, Zhanhong Cheng, Yuang Hou, and Lijun Sun. "A bayesian gaussian mixture model for probabilistic modeling of car-following behaviors." IEEE Transactions on Intelligent Transportation Systems 25, no. 6 (2023): 5880-5891]

 $a(x,t) \approx f_{\rm CF}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Gaussian Mixture}$

 α Ψ_0, ν_0 μ_0, λ_0 π_k Σ_k K χ_j

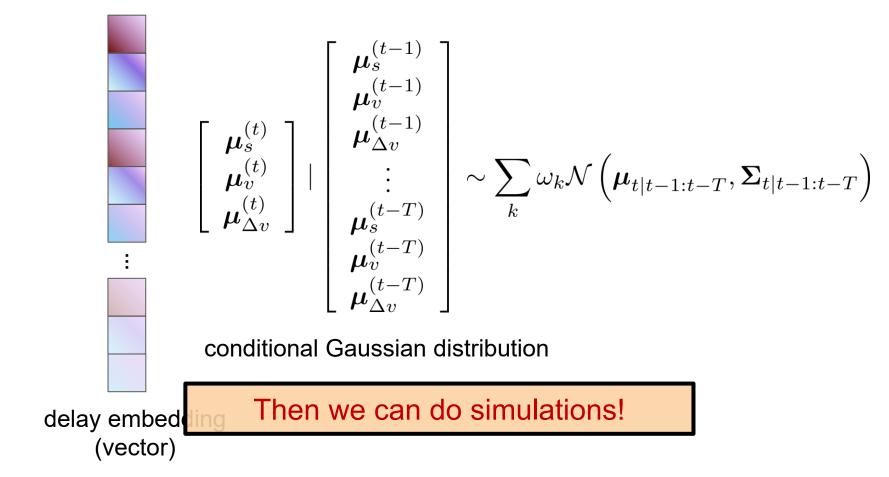
Gaussian Mixture Model (GMM)



delay embedding (vector)

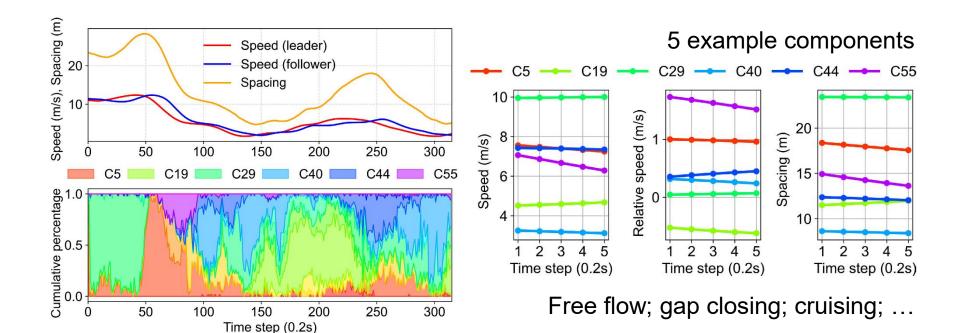
$$a(x,t) \approx f_{\rm CF}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Gaussian Mixture}$$

Gaussian Mixture Regression (GMR) Model



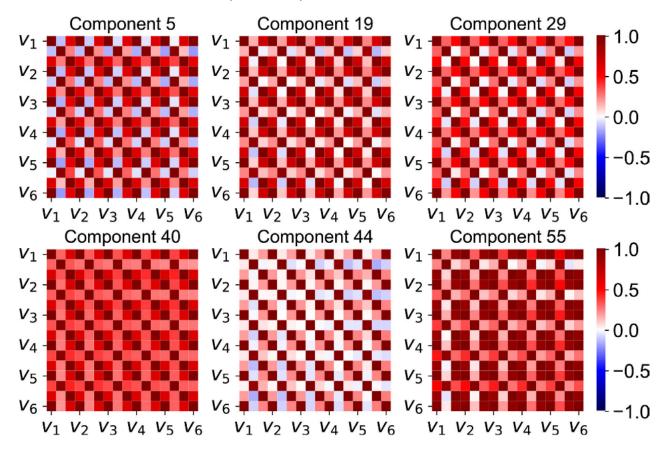
$$a(x,t) \approx f_{\rm CF}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Gaussian Mixture}$$

Gaussian Mixture Model (GMM)



 $a(x,t) \approx f_{\rm CF}(x;\boldsymbol{\theta}_{z_t}), \quad z_t \sim {\rm Gaussian~Mixture}$

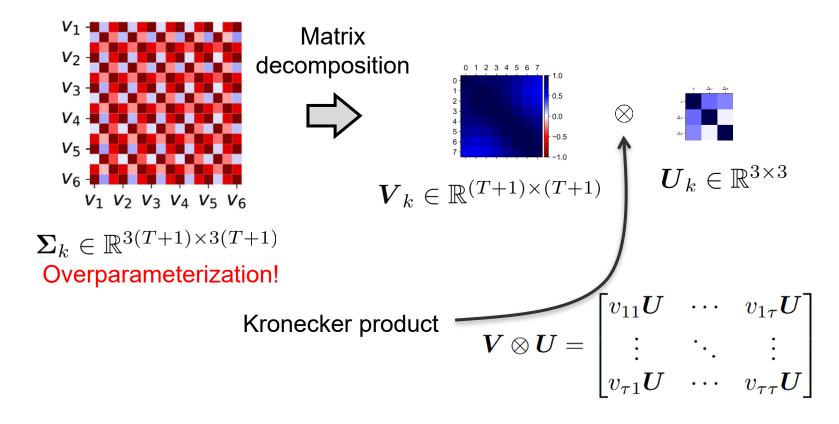
Gaussian Mixture Model (GMM)



Latent Variable Modeling – Matrix Normal Mixture

 $a(x,t) \approx f_{\rm CF}(x;\boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Matrix Normal Mixture}$

Can we find a more efficient way to represent the big covariance matrix?

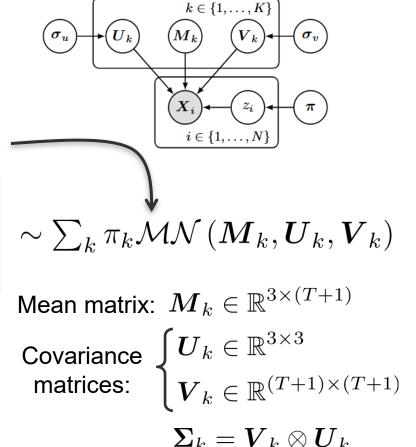


Latent Variable Modeling – Matrix Normal Mixture

 $a(x,t) \approx f_{\rm CF}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Matrix Normal Mixture}$

Matrix Normal Mixture Model (MNMM)

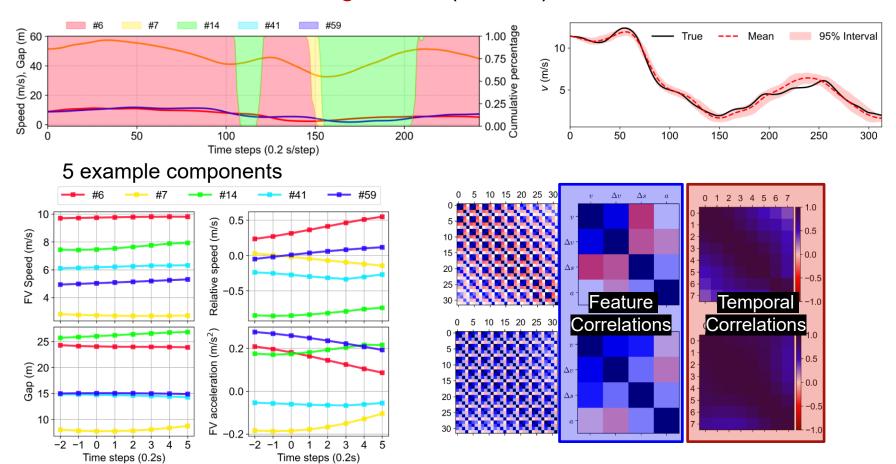
(time series)



Latent Variable Modeling – Matrix Normal Mixture

 $a(x,t) \approx f_{\text{CF}}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Matrix Normal Mixture}$

Matrix Normal Mixture Regression (MNMR) Model



Latent Variable Modeling – Quantify Interaction Intensity

$$a(x,t) \approx f_{\rm CF}(x;\boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Gaussian Mixture}$$

What is social interaction?

 A Quantifiable Definition: "A dynamic sequence of acts that mutually consider the actions and reactions of individuals through an information exchange process between two or more agents to maximize benefits and minimize costs."

[Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, and Lijun Sun. "Social interactions for autonomous driving: A review and perspectives." Foundations and Trends® in Robotics 10, no. 3-4 (2022): 198-376.]

How to quantify interaction intensity?

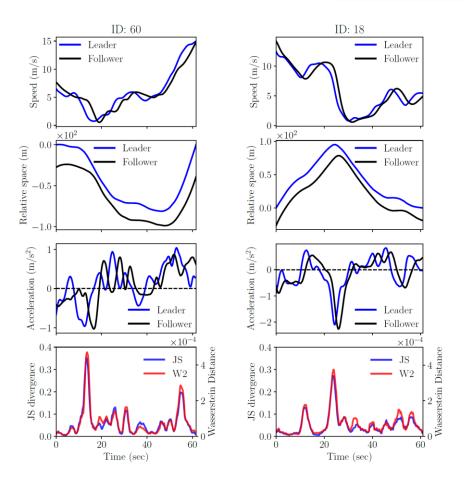
 measure to what extent the conditional probability distribution shifts upon the leader's actions.

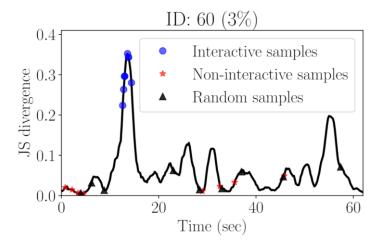
$$\mathcal{I}(oldsymbol{a}_{\mathrm{foll}}, oldsymbol{s}) \coloneqq \mathcal{D}ig(\underbrace{p(\hat{oldsymbol{a}}_{\mathrm{foll}} | oldsymbol{s}_{\mathrm{foll}}, oldsymbol{s}_{\mathrm{lead}}, *)}_{\mathrm{conditional\ dist.}\ f} ||\underbrace{p(\hat{oldsymbol{a}}_{\mathrm{foll}} | oldsymbol{s}_{\mathrm{foll}}, *)}_{\mathrm{marginal\ dist.}\ g} ig),$$

[Chengyuan Zhang, Rui Chen, Jiacheng Zhu, Wenshuo Wang, Changliu Liu, and Lijun Sun. "Interactive car-following: Matters but not always." In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), pp. 5120-5125. IEEE, 2023]

Latent Variable Modeling – Quantify Interaction Intensity

$$\mathcal{I}(oldsymbol{a}_{\mathrm{foll}}, oldsymbol{s}) \coloneqq \mathcal{D}ig(\underbrace{p(\hat{oldsymbol{a}}_{\mathrm{foll}} | oldsymbol{s}_{\mathrm{foll}}, oldsymbol{s}_{\mathrm{lead}}, *)}_{ ext{conditional dist. } f} || \underbrace{p(\hat{oldsymbol{a}}_{\mathrm{foll}} | oldsymbol{s}_{\mathrm{foll}}, *)}_{ ext{marginal dist. } g} ig),$$



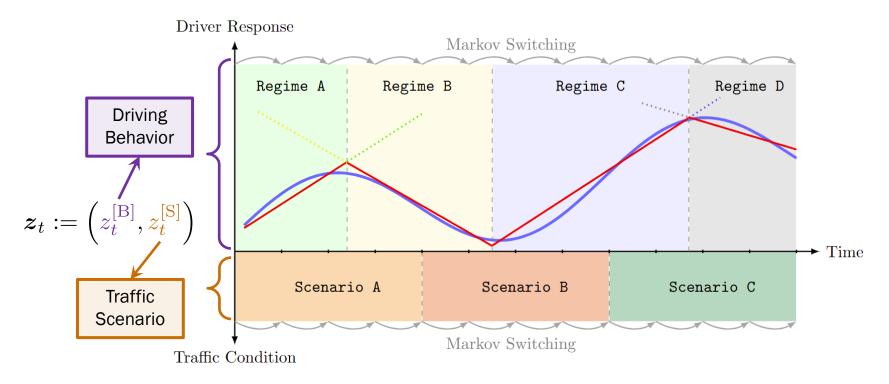


We can evaluate the interaction intensity and sample **interactive** and **non-interactive** cases!

(application: safety-critical scenario generation)

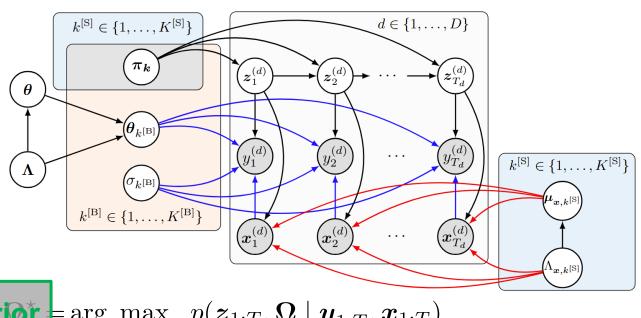
$$a(x,t) \approx f_{\rm CF}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Markov Chain}$$

Factorial-HMM (FHMM)



- Markovian regime switching
- Factorial latent states $z_t \in \mathcal{Z} = \{1, \dots, K^{[\mathrm{B}]}\} \times \{1, \dots, K^{[\mathrm{S}]}\}$

 $a(x,t) \approx f_{\rm CF}(x;\boldsymbol{\theta}_{z_t}), \quad z_t \sim {\rm Markov\ Chain}$



Posterior =
$$\underset{\boldsymbol{z}_{1:T}, \boldsymbol{\Omega}}{\operatorname{max}} \ p(\boldsymbol{z}_{1:T}, \boldsymbol{\Omega} \mid \boldsymbol{y}_{1:T}, \boldsymbol{x}_{1:T})$$

$$= \arg \max_{\boldsymbol{z}_{1:T}, \boldsymbol{\Omega}} \ p(\boldsymbol{y}_{1:T}, \boldsymbol{x}_{1:T} \mid \boldsymbol{z}_{1:T}, \boldsymbol{\Omega}) \cdot p(\boldsymbol{z}_{1:T}) \cdot p(\boldsymbol{\Omega})$$

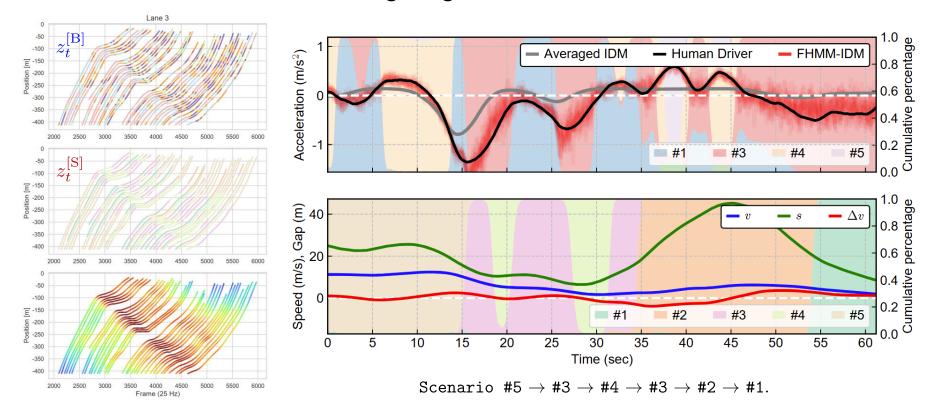
$$= \arg\max_{oldsymbol{z}_{1:T},oldsymbol{\Omega}}$$

$$egin{aligned} egin{aligned} T \ egin{aligned} \mathbf{L} & \mathbf{i} & \mathbf{k} & \mathbf{k} \end{aligned} \end{bmatrix}$$

$$\cdot p(\mathbf{\Theta}) \cdot p(\boldsymbol{\mu}_{\boldsymbol{x}}, \boldsymbol{\Lambda}_{\boldsymbol{x}}) \cdot p(\boldsymbol{\mu}, \boldsymbol{\Lambda}).$$

 $a(x,t) \approx f_{\rm CF}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim {\rm Markov\ Chain}$

FHMM-IDM: Identified Driving Regimes



$$a(x,t) \approx f_{\rm CF}(x; \boldsymbol{\theta}_{z_t}), \quad z_t \sim \text{Markov Chain}$$

Solution B: build a better CFM by involving more information

√ This model: Memory; Heterogeneity; Stochasticity; Regime switching; Adaptation;

Feature/Model	IDM	Bayesian IDM	GMM	HMM	HMM-GMM	HDP-HMM	NN (LSTM)	FHMM-IDM (Ours)
Model Type	Deterministic	Probabilistic	Probabilistic	Probabilistic	Probabilistic	Probabilistic	Deep Learning	Probabilistic
Adaptivity ¹	X	×	X	✓	✓	✓	✓	✓
Latent Behavior Type ²	×	×	Discrete	Discrete	Discrete	Discrete	Continuous	Discrete
Latent Mode Cardinality ³	-	-	Fixed	Fixed	Fixed	Infinite	Fixed	Factorial Fixed
Stochasticity	X	✓	✓	✓	✓	✓	Implicit	✓
Parameter Estimation ⁴	Heuristic	MCMC	EM/MCMC	EM/MCMC	EM/MCMC	EM/MCMC	Gradient descent	MCMC
${ m Interpretability}^5$	High	High	Moderate	Moderate	Moderate	Moderate	Low	High
Traffic Context Modeling ⁶	X	×	✓(features)	×	\checkmark (features)	✓(implicit)	✓ (learned)	✓(explicit)
Heterogeneity Handling ⁷	Poor	Moderate	Moderate	Moderate	Moderate	Excellent	Excellent	Excellent
Data-driven Flexibility ⁸	Low	Moderate	Moderate	Moderate	Moderate	$_{ m High}$	High	$_{ m High}$
Training Complexity ⁹	Low	Moderate	Low	Moderate	Moderate/High	High	High	High

IDM: Treiber et al. (2000); Treiber and Helbing (2003); Treiber et al. (2006); Punzo et al. (2021); Bayesian IDM: Zhang and Sun (2024); Zhang et al. (2024b); GMM: Chen et al. (2023); Zhang et al. (2023, 2024a); HMM: Sathyanarayana et al. (2008); Aoude et al. (2012); Gadepally et al. (2013); Vaitkus et al. (2014); HMM-GMM: Wang et al. (2018b,a); HDP-HMM: Taniguchi et al. (2014); Zhang et al. (2021); Zou et al. (2022); Neural Networks: Wang et al. (2017); Zhu et al. (2018); Mo et al. (2021); Yao et al. (2025); Zhou et al. (2025);

¹Can the model dynamically adjust to changing behavior?

² Type of latent representation: discrete (mode switches) or continuous (trajectory embeddings).

³ Whether the number of latent modes is fixed a priori or inferred.

⁴How model parameters are estimated: EM, gradient descent, MCMC, etc.

⁵Can latent states or parameters be interpreted as meaningful driving behavior?

⁶Whether traffic context (e.g., relative speed, gap) is explicitly used in latent modeling.

⁷ Ability to capture driver-specific variation (e.g., hierarchical priors, class mixture).

⁸Model's ability to fit and learn from diverse and high-dimensional driving datasets.

⁹Overall training/inference complexity: data requirements, convergence cost, parallelism.

Outline

- Background and Problem Formulation
- II. Modeling Continuous Uncertainty in Car-Following (CF) Behaviors
 - W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes
 - W2. Bayesian Dynamic Regression of CFMs with Autoregressive Errors
- III. Modeling Discrete Variability and Latent Structure in CF Behaviors
 - W3. & W4. Latent Driving Pattern Modeling Using A Bayesian GMM
 - W5. Structured Driving Pattern Modeling Using Matrix Normal Mixture Model
 - W6. Regime Switching Models for Interpretable Behavioral Segmentation
- IV. Deep Probabilistic Models for Complex Driving Behavior
 - W7. Neural Models with Structured Temporal Uncertainty
 - W8. Mapping the Subjective Risk Landscape of Continuous Human Action
 - W9. Stochastic Calibration of CFMs via Simulation-Based Inference
- v. Discussion and Conclusions

- ✓ Realistic simulation
- ✓ Improved interpretability with Solution A + Solution B

Nonstationary temporal correlations

Solution A assumes:

$$a(x,t) = f_{\text{CFM}}(x; \boldsymbol{\theta}) + \delta(t) + \epsilon_t, \ \epsilon_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2)$$

MA-IDM assumes:

$$a^{(t)} = a_{ ext{IDM}}^{(t)} + a_{ ext{GP}}^{(t)} + \epsilon_t$$
 $\Rightarrow a|i, heta \sim \mathcal{N}(a_{ ext{IDM}}, K + \sigma_{\epsilon}^2 I)$

Homoscedasticity assumption with a stationary kernel. (inappropriate)

Nonstationary model assumes:

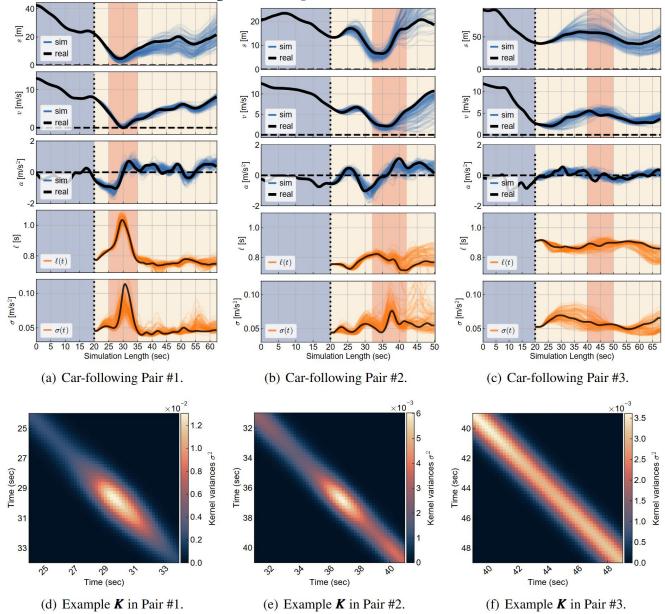
$$a^{(t)} = a_{\mathrm{NN}}^{(t)} + a_{\mathrm{GP}}^{(t)} + \epsilon_t$$
 $\Rightarrow a|i, \theta_{\mathrm{NN}} \sim \mathcal{N}(a_{\mathrm{NN}}, K + \sigma_{\epsilon}^2 I)$

Heteroscedasticity assumption with a nonstationary kernel (Gibbs kernel)

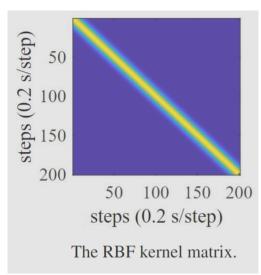
$$k_{\text{Gibbs}}(t, t'; \boldsymbol{\lambda}) := \sigma(t)\sigma(t')\sqrt{\frac{2\ell(t)\ell(t')}{\ell(t)^2 + \ell(t')^2}} \exp\left(-\frac{(t - t')^2}{\ell(t)^2 + \ell(t')^2}\right)$$

[Chengyuan Zhang, Zhengbing He, Cathy Wu, and Lijun Sun. (2025). Stochastic Modeling of Car-Following Behaviors with Nonstationary Temporal Correlations. *Preprint (under review).*]

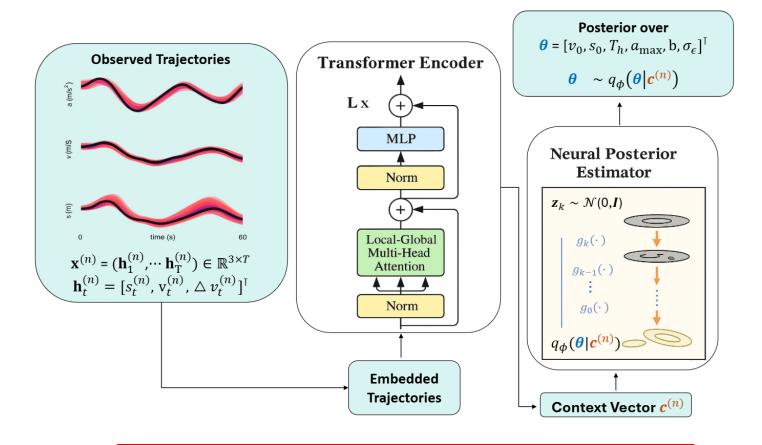
Nonstationary temporal correlations



Lengthscale: Smooth driving ↑ Abrupt transition ↓ Kernel variance: Free/steady ↑ Safety-critical ↓



Stochastic Calibration via Simulation-Based Inference



Amortized SBI: input a trajectory, get an *instant* posterior over model parameters.

(likelihood-free calibration for black-box simulators, e.g., SUMO)

Outline

- Background and Problem Formulation
- II. Modeling Continuous Uncertainty in Car-Following (CF) Behaviors
 - W1. Bayesian Calibration of CF Models (CFMs) with Gaussian Processes
 - W2. Bayesian Dynamic Regression of CFMs with Autoregressive Errors
- III. Modeling Discrete Variability and Latent Structure in CF Behaviors
 - W3. & W4. Latent Driving Pattern Modeling Using A Bayesian GMM
 - W5. Structured Driving Pattern Modeling Using Matrix Normal Mixture Model
 - W6. Regime Switching Models for Interpretable Behavioral Segmentation
- IV. Deep Probabilistic Models for Complex Driving Behavior
 - W7. Neural Models with Structured Temporal Uncertainty
 - W8. Mapping the Subjective Risk Landscape of Continuous Human Action
 - W9. Stochastic Calibration of CFMs via Simulation-Based Inference
- v. Discussion and Conclusions

Challenge: Traditional models learn a *one-to-one mapping*

$$f_{\mathrm{CF}}:(s_t,\Delta v_t,v_t)\mapsto a_t$$

(deterministic) X

but real drivers induce a *one-to-many mapping* with uncertainty

$$f_{\mathrm{CF}}:(s_t,\Delta v_t,v_t)\mapsto\{a_t^{(1)},a_t^{(2)},\dots\}$$
 (stochastic)

Solutions:

Explicit Uncertainty Modeling (continuous variability)

Solution A

 $a_tpprox f_{ ext{CF}}(m{x}_t;m{ heta})+\delta_t,$ (Zhang and Sun 2024, Zhang et al. 2024, Zhang et al. 2025a)

TC 1 1 1 N/C 1 1'	C 4	1 . 	my previous work.
Table 1. Modeling	of femnoral	correlations in	my previous work
Table 1. Wiodeling	or comporar	corretations in	my bicylous work.

Reference	$f_{\mathrm{CF}}(\mathbf{x}_t; \mathbf{\theta})$	δ_t
Zhang and Sun (2024)	IDM	Gaussian processes (GPs)
Zhang et al. (2024)	IDM	Autoregressive (AR) processes
Zhang et al. (2025a)	NN	nonstationary GPs

[Chengyuan Zhang and Lijun Sun. (2024). Bayesian calibration of the intelligent driver model. IEEE Transactions on Intelligent Transportation Systems.] [Chengyuan Zhang, Wenshuo Wang, and Lijun Sun. Calibrating car-following models via Bayesian dynamic regression. (ISTTT25 Special Issue) Transportation Research Part C: Emerging Technologies 168 (2024): 104719.1

[Chengyuan Zhang, Zhengbing He, Cathy Wu, and Lijun Sun. (2025a). When Context Is Not Enough: Modeling Unexplained Variability in Car-Following Behavior. arXiv preprint arXiv:2507.07012 (under review).]

Latent Variable Modeling (discrete variability)

Solution B

$$a_t pprox f_{\mathrm{CF}}(m{x}_t; m{ heta}_{z_t}), \ z_t \sim egin{cases} \mathrm{Gaussian\ Mixture} & \textit{(i.i.d.)} \\ \mathrm{Markov\ Chain} & \textit{(Chen et al.\ 2023,\ Zhang\ et\ al.\ 2024)} \\ \mathrm{Markov\ Chain} & \textit{(temporal\ dependence)} \end{cases}$$

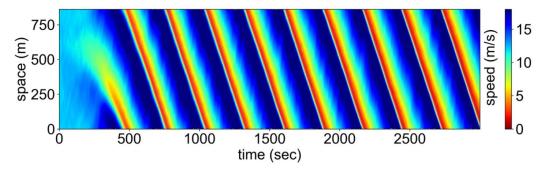
(Zhang et al. 2025b)

[Xiaoxu Chen, Chengyuan Zhang, Zhanhong Cheng, Yuang Hou, and Lijun Sun. A bayesian gaussian mixture model for probabilistic modeling of carfollowing behaviors. IEEE Transactions on Intelligent Transportation Systems 25, no. 6 (2023): 5880-5891.]

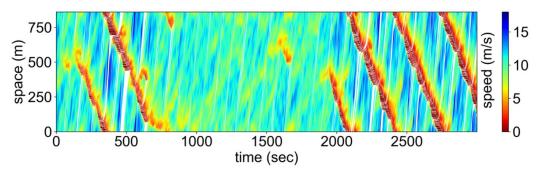
[Chengyuan Zhang, Kehua Chen, Meixin Zhu, Hai Yang, and Lijun Sun. Learning car-following behaviors using bayesian matrix normal mixture regression. In 2024 IEEE Intelligent Vehicles Symposium (IV), pp. 608-613. IEEE, 2024.]

[Chengyuan Zhang, Cathy Wu, and Lijun Sun. (2025b). Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior. arXiv preprint arXiv:2506.14762 (2025b). (under review) .]

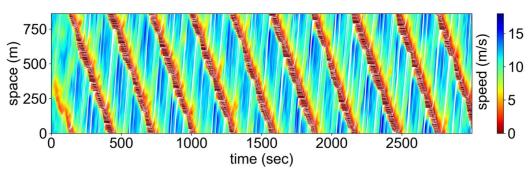
Outcome: stochastic, interpretable human-like simulators



(a) Simulation with fixed IDM parameters and random white noise.



(b) Light traffic simulation with dynamic IDM (p = 4).

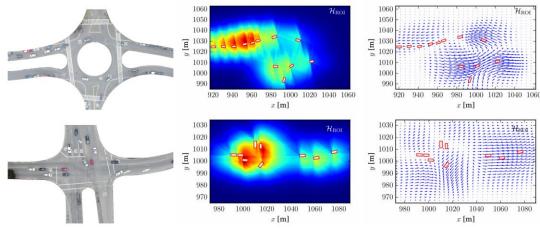


(c) Dense traffic simulation with dynamic IDM (p = 4).

Sugiyama experiment

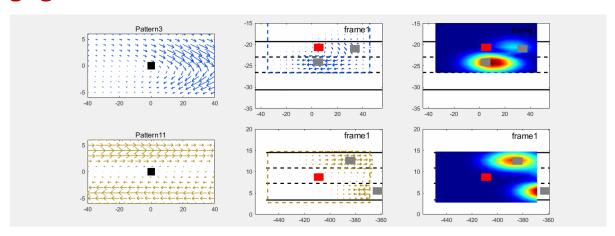
Other Interactive Scenarios (2019-2021)

(a) Roundabout & Intersection



[Wenshuo Wang, Chengyuan Zhang, Pin Wang, and Ching-Yao Chan. "Learning representations for multi-vehicle spatiotemporal interactions with semi-stochastic potential fields." In 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1935-1940. IEEE, 2020.]

(b) Lane Changing



[Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, and Junqiang Xi. "Spatiotemporal learning of multivehicle interaction patterns in lane-change scenarios." IEEE Transactions on Intelligent Transportation Systems 23, no. 7 (2021): 6446-6459.]

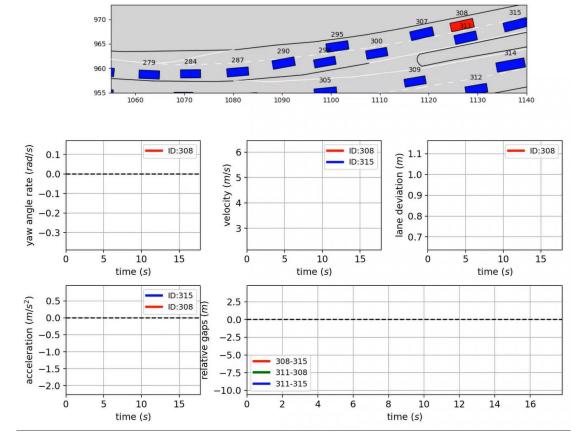
Other Interactive Scenarios (2019-2021)

(c) Unsignalized Intersection

(with YOLOv3)

[Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, and Ding Zhao. "A general framework of learning multi-vehicle interaction patterns from video." In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 4323-4328. IEEE, 2019.]

(d) On-ramp merge in



[Unpublished Work.]

Discussion and takeaways

- Human Driving Behaviors Modeling and Stochastic Simulations
 - Proper assumptions are important.
 - Residuals are correlated --- we cannot use i.i.d. error assumption;
 - Heteroscedasticity assumption with a nonstationary kernel;
 - Always think about "What is missing?"
 - Positive / negative correlations;
 - Temporal structure;
 - Social interaction is complex; even the simplest car-following behaviors remain under investigation.

Related Publications

Paper:

- 1. **Chengyuan Zhang**, Zhengbing He, Cathy Wu, and Lijun Sun. "When Context Is Not Enough: Modeling Unexplained Variability in Car-Following Behavior." *arXiv preprint arXiv:2507.07012* (2025).(NN with nonstationary GP)
- 2. **Chengyuan Zhang**, Cathy Wu, and Lijun Sun. "Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior." *arXiv preprint arXiv:2506.14762* (2025). (driving patterns with HMM)
- 3. **Chengyuan Zhang**, and Lijun Sun. "Bayesian calibration of the intelligent driver model." *IEEE Transactions on Intelligent Transportation Systems* 25, no. 8 (2024): 9308-9320. (IDM with GP)
- 4. **Chengyuan Zhang**, Wenshuo Wang, and Lijun Sun. "Calibrating car-following models via Bayesian dynamic regression." (ISTTT25 Special Issue) Transportation Research Part C: Emerging Technologies 168 (2024): 104719. (IDM with AR)
- 5. **Chengyuan Zhang**, Kehua Chen, Meixin Zhu, Hai Yang, and Lijun Sun. "Learning car-following behaviors using bayesian matrix normal mixture regression." In 2024 IEEE Intelligent Vehicles Symposium (IV), pp. 608-613. IEEE, 2024. (Mixture model with temporal structure)
- 6. **Chengyuan Zhang**, Rui Chen, Jiacheng Zhu, Wenshuo Wang, Changliu Liu, and Lijun Sun. "Interactive car-following: Matters but not always." In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), pp. 5120-5125. IEEE, 2023. (quantify interactions)
- 7. Xiaoxu Chen, **Chengyuan Zhang**, Zhanhong Cheng, Yuang Hou, and Lijun Sun. "A bayesian gaussian mixture model for probabilistic modeling of car-following behaviors." *IEEE Transactions on Intelligent Transportation Systems* 25, no. 6 (2023): 5880-5891. (driving patterns with GMM)
- 8. Wenshuo Wang, Letian Wang, **Chengyuan Zhang**, Changliu Liu, and Lijun Sun. "Social interactions for autonomous driving: A review and perspectives." Foundations and Trends® in Robotics 10, no. 3-4 (2022): 198-376. (review of social interactions)
- 9. **Chengyuan Zhang**, Jiacheng Zhu, Wenshuo Wang, and Junqiang Xi. "Spatiotemporal learning of multivehicle interaction patterns in lane-change scenarios." *IEEE Transactions on Intelligent Transportation Systems* 23, no. 7 (2021): 6446-6459. (driving patterns of lane-change)
- 10. Wenshuo Wang, **Chengyuan Zhang**, Pin Wang, and Ching-Yao Chan. "Learning representations for multi-vehicle spatiotemporal interactions with semi-stochastic potential fields." In 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1935-1940. IEEE, 2020. (intersection & roundabout)
- 11. **Chengyuan Zhang**, Jiacheng Zhu, Wenshuo Wang, and Ding Zhao. "A general framework of learning multi-vehicle interaction patterns from video." In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 4323-4328. IEEE, 2019. (driving patterns of intersection)
- 12. Menglin Kong, **Chengyuan Zhang**, Lijun Sun. "Stochastic Calibration of Car-Following Models via Simulation-Based Inference." *To be presented on TRBAM 2026*. (SBI for calibration)

Code:

- 1. https://github.com/Chengyuan-Zhang/IDM_Bayesian_Calibration
- 2. https://github.com/Chengyuan-Zhang/Gaussian_Velocity_Field

Thanks! Questions?

Chengyuan Zhang (enzozcy@gmail.com)

Ph.D. Candidate (advised by Prof. Lijun Sun)

Department of Civil Engineering

McGill University

https://chengyuan-zhang.github.io/

Oct. 22, 2025 MIT Wu Lab (online)

LinkedIn

