

Calibrating Car-Following Models via Bayesian Dynamic Regression

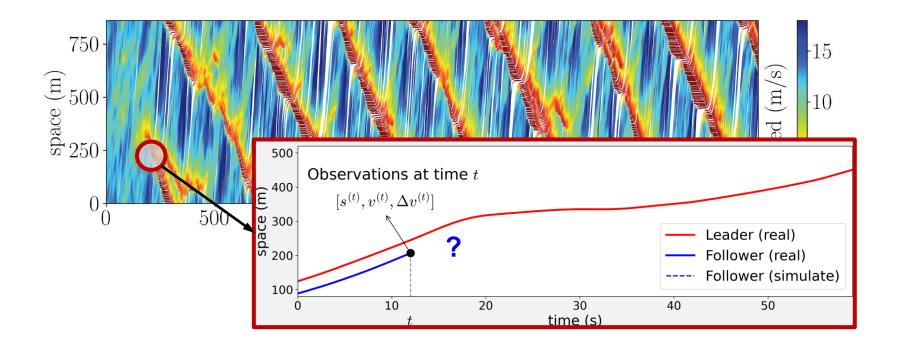
Chengyuan Zhang, Wenshuo Wang, and Lijun Sun*

Department of Civil Engineering McGill University *Contact: lijun.sun@mcgill.ca

July 17, 2024

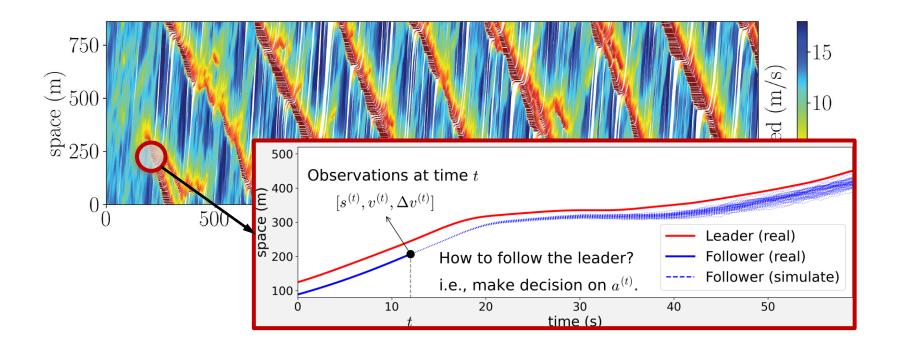
Motivation / background

• How would the vehicle react in response to the leading vehicle?



Motivation / background

• How would the vehicle react in response to the leading vehicle?



· What do we need from simulation?

Motivation / background

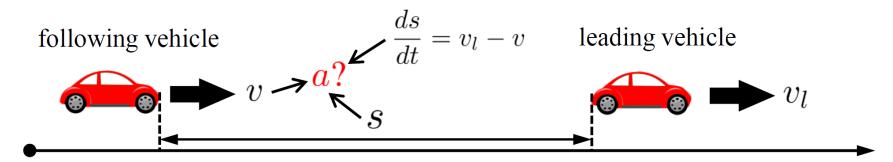
- The goal of traffic simulations:
 - **Past** : reproduce traffic phenomenon
 - **Future** : support the development and test of control algorithms
 - Connected and Automated Vehicle
 - Reinforcement learning for traffic control/management
 - Human drivers still involved
 - Safety, predictability, and uncertainty
- How do we introduce randomness?
 - × Deterministic car-following models (No)
 - Human-driver car-following models (Yes)

In this work, we are interested in:

- > How do we calibrate a human-driver car-following model?
- How do we simulate human-like car-following behaviors?

Outline

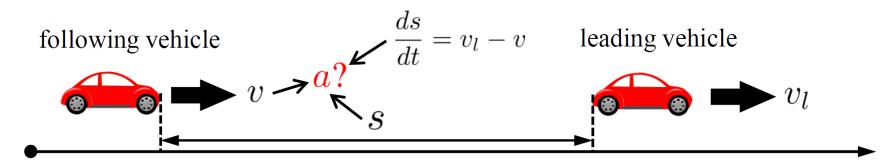
- Intelligent driver model (IDM, as an example)
- Probabilistic modeling framework (Bayesian IDM, GP+IDM, AR+IDM)
- Numerical experiments for calibration
- Simulation
- Discussion



Intelligent Driver Model (IDM) (Treiber et al. 2000)

$$a_{\text{IDM}} = \alpha \left(1 - \left(\frac{v}{v_0}\right)^{\delta} - \left(\frac{s^*(v, \Delta v)}{s}\right)^2 \right)$$
$$s^*(v, \Delta v) = s_0 + s_1 \sqrt{\frac{v}{v_0}} + v T + \frac{v \Delta v}{2\sqrt{\alpha \beta}}$$

where $v_0, s_0, T, \alpha, \beta$ and δ are model parameters, we denote these parameters as a vector $\boldsymbol{\theta} = [v_0, s_0, T, \alpha, \beta] \in \mathbb{R}^5$, and we fix $\delta = 4$.

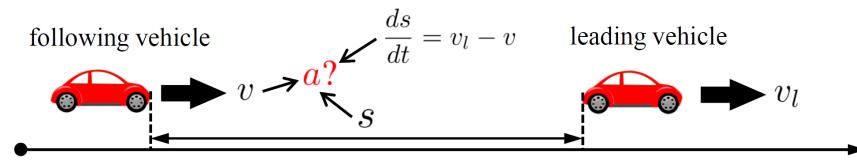


• IDM assumes:
$$a^{(t)} = a^{(t)}_{\text{IDM}} + \epsilon_t, \ \epsilon_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2).$$

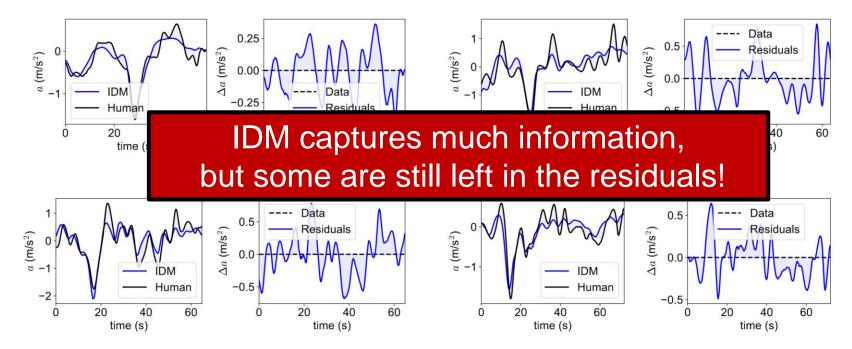
• Calibration by MLE: max likelihood =
$$\prod_{t=1}^{T} \mathcal{N}(\hat{a}^{(t)} | a_{\text{IDM}}^{(t)}, \sigma_{\epsilon}^{2})$$

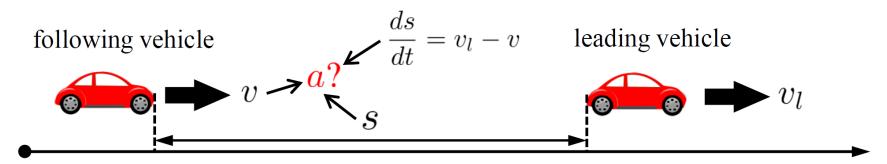
• Loss function in literature (Punzo et al. 2000):

$$\min \mathcal{L}, \, \mathcal{L} = \frac{1}{T} \sum_{t=1}^{T} (a^{(t)} - \hat{a}^{(t)})^2 + \frac{\alpha}{T} \sum_{t=1}^{T} (v^{(t)} - \hat{v}^{(t)})^2 + \frac{\beta}{T} \sum_{t=1}^{T} (x^{(t)} - \hat{x}^{(t)})^2$$

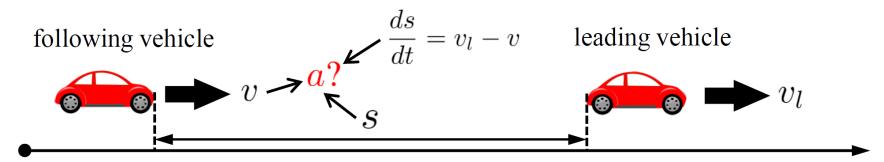


• IDM assumes: $a^{(t)} = a^{(t)}_{\text{IDM}} + \epsilon_t, \ \epsilon_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2).$

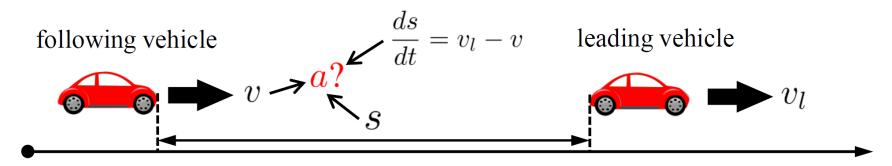




- For a human-driver CF model, what do we miss?
 - Reaction time / action inertia (of the drivers)
 - Brake light signals (from the *leaders*)
 - Nudging behaviors (from the *followers*)
 - Temporally correlated errors / Time delay (from the model aspect)
 - Heterogeneity of drivers (from the model aspect)
- IDM as a parsimonious model can hardly explain all the variation in the data; as a result, the residual terms are serially correlated;
- How do we integrate these factors when calibrating IDM?



- For a human-driver CF model, what do we miss?
 - Reaction time / action inertia (of the drivers)
 - Brake light signals (from the *leaders*)
 - Nudging behaviors (from the followers)
 - **Temporally correlated errors / Time delay** (from the *model* aspect)
 - Heterogeneity of drivers (from the *model* aspect)
- IDM as a parsimonious model can hardly explain all the variation in the data; as a result, the residual terms are serially correlated;
- How do we integrate these factors when calibrating IDM?



• Real process: $a(x,t) = a(x;\theta) + \delta(t) + \epsilon, \ \epsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0,\sigma_{\epsilon}^2)$

(Kennedy and O'Hagan. 2001)

• IDM: $a(x,t) = a_{\text{IDM}}(x;\theta) + \epsilon, \ \epsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0,\sigma_{\epsilon}^2)$ (Treiber et al. 2000)

<u>Missed the temporal part</u> $\delta(t)$

TO-DO:

- Consider $\delta(t)$ in calibration;
- Model $\delta(t+1)|\delta(t)$ in simulations.

Memory-Augmented IDM (MA-IDM)

(Zhang and Sun 2024)

How to model $\delta(t)$ and $\delta(t+1)|\delta(t)$?

Real process:

•

$$a(x,t) = a(x;\boldsymbol{\theta}) + \delta(t) + \epsilon, \ \epsilon \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,\sigma_{\epsilon}^2)$$

• IDM assumes:

$$a^{(t)} = \boxed{a_{\text{IDM}}^{(t)}} + \epsilon_t, \ \epsilon_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_\epsilon^2)$$

$$\Rightarrow oldsymbol{a} | oldsymbol{i}, oldsymbol{ heta} \sim \mathcal{N}(oldsymbol{a}_{ ext{IDM}}, \sigma_{\epsilon}^2 oldsymbol{I})$$

MA-IDM assumes:

$$a^{(t)} = \boxed{a_{\text{IDM}}^{(t)}} + \boxed{a_{\text{GP}}^{(t)}}$$
residuals

Vector form

where \boldsymbol{K} is a kernel matrix .

Memory-Augmented IDM (MA-IDM) (Zhang and Sun 2024)

• MA-IDM assumes:

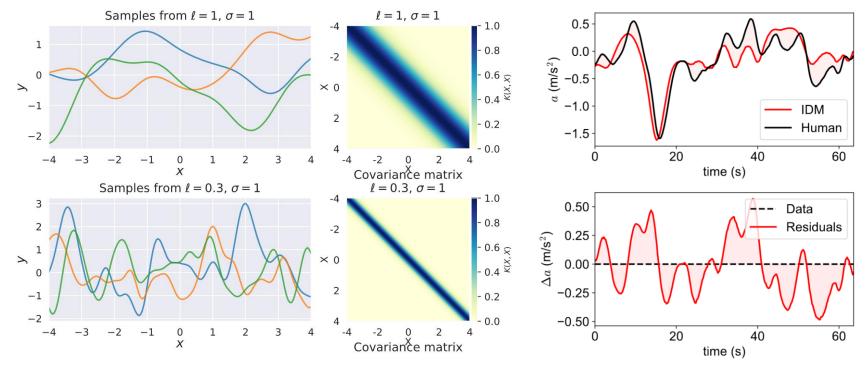
$$a^{(t)} = a^{(t)}_{\text{IDM}} + a^{(t)}_{\text{GP}}$$

$$\Rightarrow oldsymbol{a}|oldsymbol{i},oldsymbol{ heta}\sim\mathcal{N}(oldsymbol{a}_{ ext{IDM}},oldsymbol{K})$$

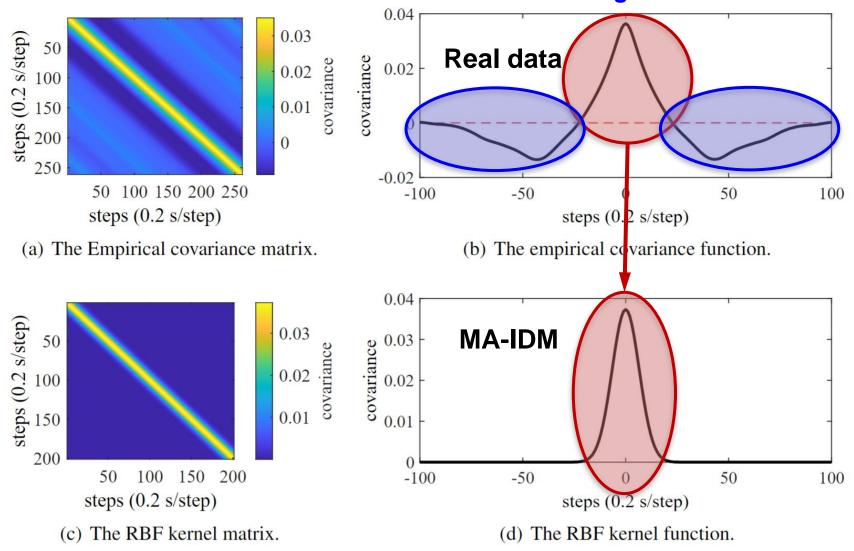
residuals

where **K** is a kernel matrix.

Gaussian processes



But what do we miss in the residuals? Negative correlations



Dynamic IDM (AR+IDM)

How to model
$$\delta(t)$$
 and $\delta(t+1)|\delta(t)$?

Real process:

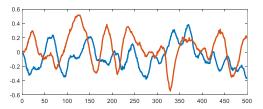
$$a(x,t) = a(x;\theta) + \delta(t) + \epsilon, \ \epsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0,\sigma_{\epsilon}^{2})$$

• Dynamic IDM assumes:

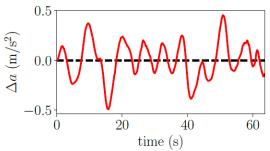
Autoregressive (AR) processes

$$\begin{aligned} a_d^{(t)} &= \mathbf{IDM}_d^{(t)} + \boldsymbol{\varepsilon}_d^{(t)}, \\ \boldsymbol{\varepsilon}_d^{(t)} &= \boldsymbol{\rho}_{d,1} \boldsymbol{\varepsilon}_d^{(t-1)} + \boldsymbol{\rho}_{d,2} \boldsymbol{\varepsilon}_d^{(t-2)} + \dots + \boldsymbol{\rho}_{d,p} \boldsymbol{\varepsilon}_d^{(t-p)} + \boldsymbol{\eta}_d^{(t)} \\ \boldsymbol{\eta}^{(t)} &\sim \mathcal{N}(0, \sigma_{\eta}^2). \end{aligned}$$

ADVANTAGE: It involves rich information from several historical steps instead of using only one step.



Two random series generated by AR(4)



Calibration

Bayesian: $p(params|data) \propto p(data | params) p(params)$

Bayesian IDM

 $\boldsymbol{\sigma}_{0} \stackrel{iid}{\sim} \operatorname{Exp}(\lambda_{0}),$ $\boldsymbol{\Sigma} \sim \operatorname{LKJCholeskyCov}(\boldsymbol{\eta}, \boldsymbol{\sigma}_{0}),$ $\ln(\boldsymbol{\theta}) \sim \mathcal{N}(\ln(\boldsymbol{\theta}_{\operatorname{rec}}), \boldsymbol{\Sigma}_{0}),$ $\boldsymbol{\sigma}_{\boldsymbol{\eta}} \sim \operatorname{Exp}(\lambda_{\boldsymbol{\eta}}),$ $\mathbf{for \, driver} \, d = 1, \dots, D:$ $\ln(\boldsymbol{\theta}_{d}) \sim \mathcal{N}(\ln(\boldsymbol{\theta}), \boldsymbol{\Sigma}),$ $\mathbf{for \, time} \, t = t_{0}, \dots, t_{0} + (T_{d} - 1)\Delta t:$ $\hat{a}_{d}^{(t)} | \boldsymbol{h}_{d}^{(t)}, \boldsymbol{\theta}_{d} \stackrel{iid}{\sim} \mathcal{N}(\operatorname{IDM}_{d}^{(t)}, \boldsymbol{\sigma}_{\boldsymbol{\eta}}^{2})$

• MA-IDM (GP+IDM)

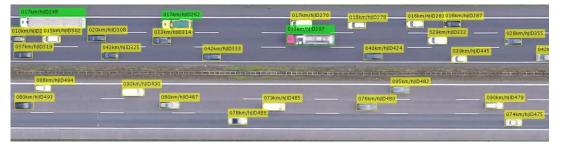
 $\sigma_{k} \sim \operatorname{Exp}(\lambda_{k}),$ $\ln(\ell) \sim \mathcal{N}(\ln(\mu_{\ell}), \sigma_{\ell_{0}}^{2}),$ for driver $d = 1, \dots, D$: $\ln(\sigma_{k,d}) \sim \mathcal{N}(\ln(\sigma_{k}), \sigma_{\sigma}^{2}) \in \mathbb{R},$ $\ln(\ell_{d}) \sim \mathcal{N}(\ln(\ell), \sigma_{\ell}^{2}) \in \mathbb{R},$ $a_{d} | h_{d}, \boldsymbol{\theta}_{d} \stackrel{ii.d}{\sim} \mathcal{N}(\operatorname{IDM}_{d} \mathbf{K}_{d}).$

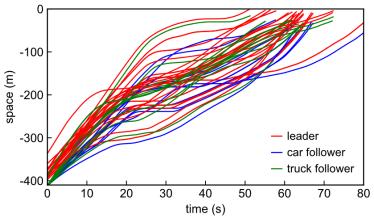
Dynamic IDM (AR+IDM)

 $\begin{aligned} \sigma_{\eta} \sim \operatorname{Exp}(\lambda_{\eta}), \\ \rho \sim \mathcal{N}(\mathbf{0}, \sigma_{\rho_{0}}^{2} \mathbf{I}), \\ \text{for driver } d &= 1, \dots, D: \\ \rho_{d} \sim \mathcal{N}(\boldsymbol{\rho}, \sigma_{\rho}^{2} \mathbf{I}), \\ \text{for time } t &= t_{0}, \dots, t_{0} + (T_{d} - 1)\Delta t: \\ a_{d}^{(t)} | \mathbf{h}_{d}^{(t)}, \mathbf{\theta}_{d} \overset{iid}{\sim} \mathcal{N}\left(\boxed{\operatorname{IDM}_{d}^{(t)}} + \sum_{k=1}^{p} \rho_{d,k} \left(a_{d}^{(t-k)} - \operatorname{IDM}_{d}^{(t-k)} \right), \overline{\sigma_{\eta}^{2}} \right), \end{aligned}$

Experiments – Car-Following Data Extraction

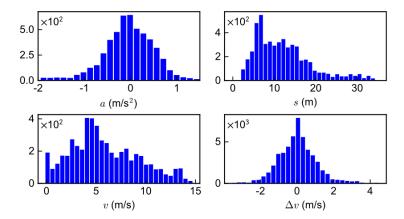
- HighD dataset;
 (Krajewski et al. 2018)
- 20 leader-follower pairs.





Intelligent Driver Model

$$a_{\text{IDM}} = \alpha \left(1 - \left(\frac{v}{v_0}\right)^{\delta} - \left(\frac{s^*(v, \Delta v)}{s}\right)^2 \right)$$
$$s^*(v, \Delta v) = s_0 + s_1 \sqrt{\frac{v}{v_0}} + v T + \frac{v \Delta v}{2\sqrt{\alpha \beta}}$$



Must provide enough info to calibrate IDM!

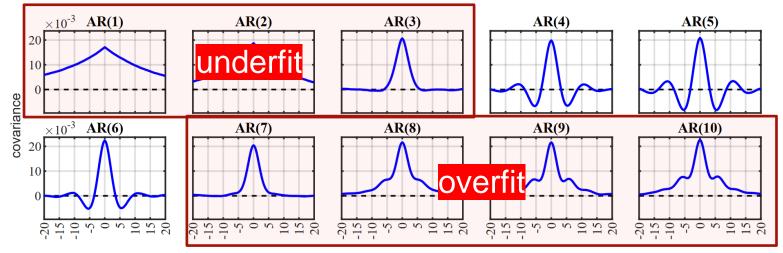
- v_0 : free-flow;
- *s*₀ and *T*: steady following;
- *α*: freely accelerating data;
- β : approaching (with braking).

Experiments – Identified Parameters

The length scale \approx 1.5 sec \rightarrow capture positive correlations within 4~5 sec (3-sigma in Normal distribution).					
Table 1: Posterior Mean of Model Parameters.					
Models	$\boldsymbol{\theta} = [v_0, s_0, T, \boldsymbol{\alpha}, \boldsymbol{\beta}]$	σ_η	ρ		
MA-IDM	[16.919, 3.538, 1.183, 0.553, 2.147]	/	$(\sigma_k = 0.202(\ell = 1.44 \text{ s}))$ MA-IDM		
Bayesian IDM $(p = 0)$	[21.090, 3.724, 0.946, 0.518, 1.542]	0.240			
Dynamic IDM $(p = 1)$	[29.738, 3.220, 1.186, 0.769, 4.130]	0.019	[0.989]		
Dynamic IDM $(p = 2)$	[27.592, 3.367, 1.191, 0.741, 3.483]	0.019	[1.234, -0.247]		
Dynamic IDM $(p = 3)$	[25.004, 2.974, 1.206, 0.811, 2.442]	0.017	[1.123, 0.425, -0.572]		
Dynamic IDM $(p = 4)$	[26.181, 2.850, 1.222, 0.811, 3.145]	0.016	[0.901, 0.590, -0.149, -0.377]		
Dynamic IDM $(p = 5)$	[27.099, 2.843, 1.235, 0.813, 3.422]	0.016	[0.874, 0.580, -0.105, -0.315, -0.071]		
Dynamic IDM $(p = 6)$	[28.089, 2.702, 1.259, 0.826, 3.325]	0.015	[0.902, 0.632, -0.100, -0.427, -0.217, 0.181]		
Dynamic IDM $(p = 7)$	[28.574, 2.594, 1.276, 0.817, 3.439]	0.014	[0.866, 0.690, -0.001, -0.413, -0.378, -0.032, 0.248]		
Dynamic IDM $(p = 8)$	[28.446, 2.573, 1.264, 0.796, 3.805]	0.014	[0.816, 0.700, 0.075, -0.331, -0.381, -0.172, 0.080, 0.200]		
Dynamic IDM $(p = 9)$	[29.675, 2.641, 1.265, 0.776, 4.452]	0.014	[0.794, 0.694, 0.093, -0.295, -0.351, -0.181, 0.016, 0.126, 0.090]		
Dynamic IDM $(p = 10)$	[28.769, 2.739, 1.243, 0.763, 4.916]	0.014	[0.795, 0.694, 0.090, -0.295, -0.346, -0.178, 0.014, 0.121, 0.085, 0.007]		

* Recommendation values (Treiber et al., 2000): $\theta_{rec} = [33.3, 2.0, 1.6, 1.5, 1.67].$

Experiments – Identified AR Parameters



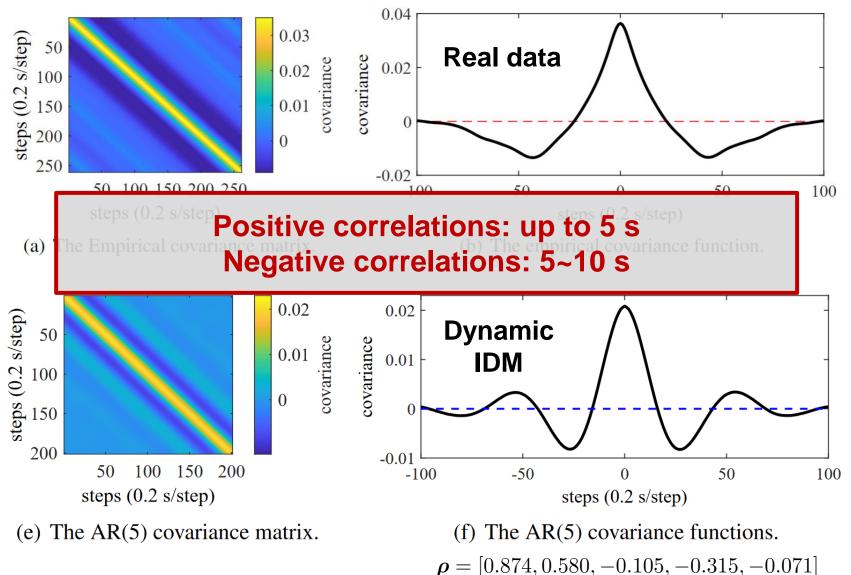
time (s)

Table 1: Posterior Mean of Model Parameters.

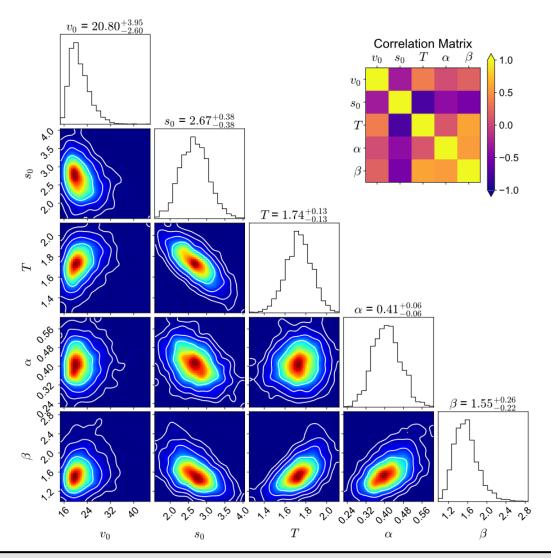
Models	$\boldsymbol{\theta} = [v_0, s_0, T, \boldsymbol{\alpha}, \boldsymbol{\beta}]$	σ_η	ρ
MA-IDM	[16.919, 3.538, 1.183, 0.553, 2.147]	/	$(\sigma_k = 0.202, \ell = 1.44 \text{ s})$
Bayesian IDM $(p = 0)$	[21.090, 3.724, 0.946, 0.518, 1.542]	0.240	
Dynamic IDM $(p = 1)$	[29.738, 3.220, 1.186, 0.769, 4.130]	0.019	[0.989]
Dynamic IDM $(p = 2)$	[27.592, 3.367, 1.191, 0.741, 3.483]	0.019	[1.234, -0.247]
Dynamic IDM $(p = 3)$	[25.004, 2.974, 1.206, 0.811, 2.442]	0.017	[1.123, 0.425, -0.572]
Dynamic IDM $(p = 4)$	[26.181, 2.850, 1.222, 0.811, 3.145]	0.016	[0.901, 0.590, -0.149, -0.377]
Dynamic IDM $(p = 5)$	[27.099, 2.843, 1.235, 0.813, 3.422]	0.016	[0.874, 0.580, -0.105, -0.315, -0.071]
Dynamic IDM $(p = 6)$	[28.089, 2.702, 1.259, 0.826, 3.325]	0.015	[0.902, 0.632, -0.100, -0.427, -0.217, 0.181]
Dynamic IDM $(p = 7)$	[28.574, 2.594, 1.276, 0.817, 3.439]	0.014	[0.866, 0.690, -0.001, -0.413, -0.378, -0.032, 0.248]
Dynamic IDM $(p = 8)$	[28.446, 2.573, 1.264, 0.796, 3.805]	0.014	[0.816, 0.700, 0.075, -0.331, -0.381, -0.172, 0.080, 0.200]
Dynamic IDM $(p = 9)$	[29.675, 2.641, 1.265, 0.776, 4.452]	0.014	[0.794, 0.694, 0.093, -0.295, -0.351, -0.181, 0.016, 0.126, 0.090]
Dynamic IDM $(p = 10)$	[28.769, 2.739, 1.243, 0.763, 4.916]	0.014	[0.795, 0.694, 0.090, -0.295, -0.346, -0.178, 0.014, 0.121, 0.085, 0.007]

* Recommendation values (Treiber et al., 2000): $\theta_{rec} = [33.3, 2.0, 1.6, 1.5, 1.67].$

Experiments – Identified AR Parameters



Experiments – Identified IDM Parameters



We can draw samples (IDM parameters) from the posterior distributions!!

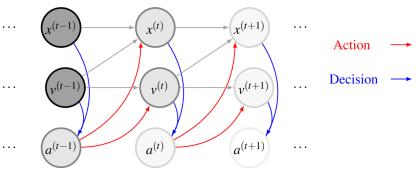
Simulations – Deterministic v.s. Stochastic

How to simulate
$$\delta(t+1)|\delta(t)$$
?

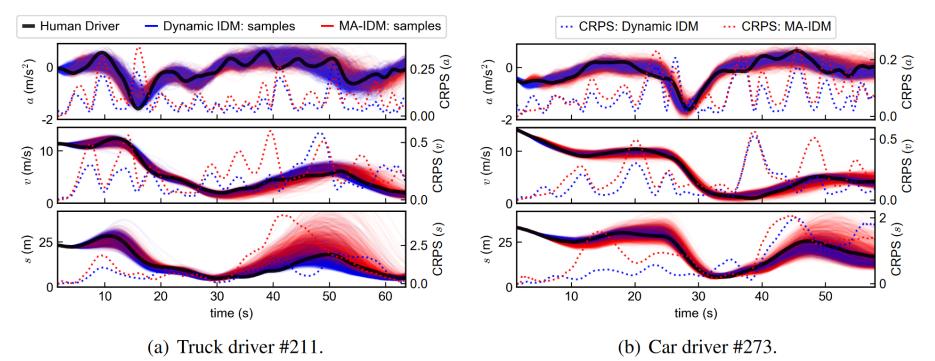
• Dynamic IDM:

$$\begin{aligned} a_d^{(t)} &= \operatorname{IDM}_d^{(t)} + \varepsilon_d^{(t)}, \\ \varepsilon_d^{(t)} &= \rho_{d,1} \varepsilon_d^{(t-1)} + \rho_{d,2} \varepsilon_d^{(t-2)} + \dots + \rho_{d,p} \varepsilon_d^{(t-p)} + \eta_d^{(t)} \\ \eta^{(t)} &\sim \mathcal{N}(0, \sigma_\eta^2). \end{aligned}$$

- Stochastic simulation for step t_0 :
 - 1. generating the mean model by sampling a set of IDM parameters;
 - 2. computing the serial correlation term according to the historical information; t-1 t t+1
 - 3. sampling white noise randomly.



Simulations – Stochastic Simulation (Dynamic IDM v.s. MA-IDM)



Brief results:

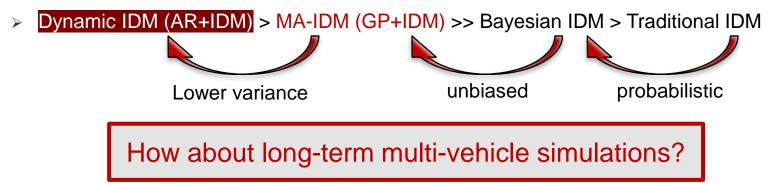
- Action uncertainty is scenario specific: When the leading vehicle is braking, all drivers have to decelerate; But when the leading vehicle accelerates, actions are more uncertain at their own will.
- Stochastic simulations can contain the ground truth curve in its envelope.
- > Dynamic IDM has much lower variances than MA-IDM;

Simulations – Evaluation

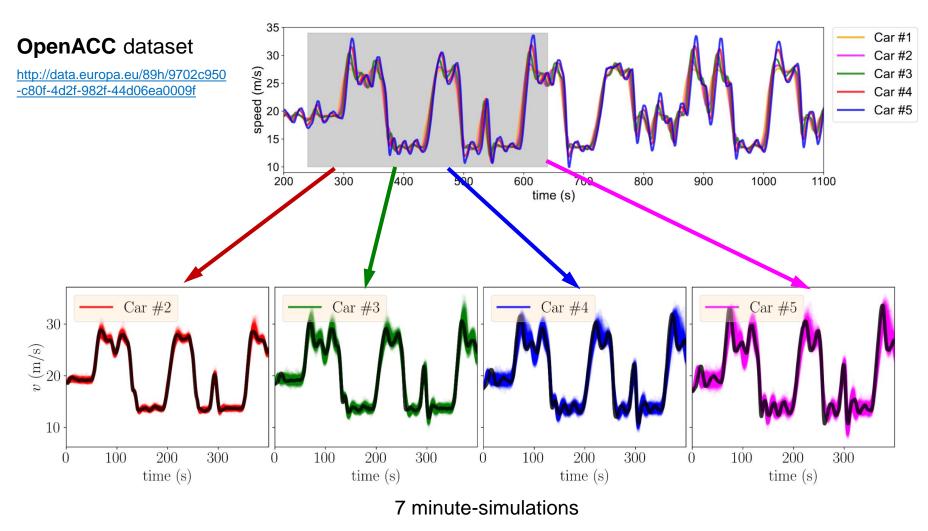
Table 2: Evaluations of the short-term (5 s) simulations with different models. All values are amplified by ten times to keep an efficient form.

= real values $\times 10$	RMSE (a)	RMSE (v)	RMSE (<i>s</i>)	CRPS(a)	CRPS(v)	CRPS(s)
MA-IDM	2.03 ± 0.48	3.00 ± 0.59	5.15 ± 0.86	1.11 ± 0.32	1.62 ± 0.39	3.14 ± 0.58
Bayesian IDM $(p = 0)$	3.19 ± 0.62	2.90 ± 0.83	6.00 ± 1.83	1.25 ± 0.33	1.92 ± 0.62	3.91 ± 1.29
Dynamic IDM $(p = 1)$	1.78 ± 0.54	2.83 ± 0.87	4.94 ± 1.46	1.26 ± 0.44	1.95 ± 0.67	3.07 ± 0.98
Dynamic IDM $(p = 2)$	1.74 ± 0.44	2.68 ± 0.66	4.78 ± 1.14	1.18 ± 0.36	1.77 ± 0.48	2.88 ± 0.76
Dynamic IDM $(p = 3)$	1.77 ± 0.46	2.77 ± 0.79	4.68 ± 1.26	1.10 ± 0.35	1.66 ± 0.55	2.51 ± 0.79
Dynamic IDM $(p = 4)$	1.76 ± 0.55	2.71 ± 0.85	4.43 ± 1.29	1.08 ± 0.42	1.64 ± 0.61	2.40 ± 0.83
Dynamic IDM $(p = 5)$	1.66 ± 0.38	2.65 ± 0.66	4.29 ± 1.01	0.95 ± 0.28	1.49 ± 0.45	2.17 ± 0.63
Dynamic IDM $(p = 6)$	1.76 ± 0.51	2.72 ± 0.81	4.41 ± 1.22	1.07 ± 0.39	1.60 ± 0.56	2.32 ± 0.76
Dynamic IDM $(p = 7)$	1.68 ± 0.39	2.65 ± 0.68	4.28 ± 1.09	1.00 ± 0.29	1.56 ± 0.46	2.24 ± 0.69
Dynamic IDM $(p = 8)$	1.68 ± 0.46	2.65 ± 0.74	4.27 ± 1.11	1.01 ± 0.35	1.55 ± 0.51	2.25 ± 0.71
Dynamic IDM $(p = 9)$	1.68 ± 0.47	2.63 ± 0.77	4.23 ± 1.17	1.01 ± 0.35	1.53 ± 0.54	2.23 ± 0.75
Dynamic IDM $(p = 10)$	1.72 ± 0.46	2.68 ± 0.76	4.27 ± 1.07	1.04 ± 0.34	1.56 ± 0.52	2.23 ± 0.65

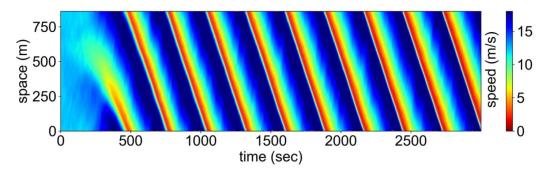
Brief results:



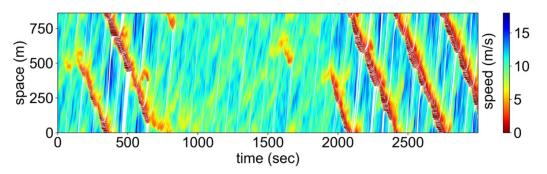
Simulations – Multi-vehicle scenario: Platoon



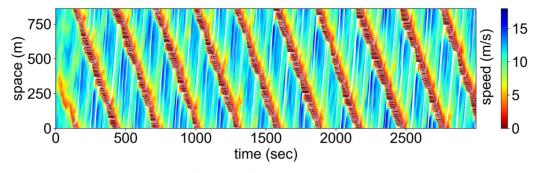
Simulations – Multi-vehicle scenario: Ring road



(a) Simulation with fixed IDM parameters and random white noise.



(b) Light traffic simulation with dynamic IDM (p = 4).



(c) Dense traffic simulation with dynamic IDM (p = 4).

Sugiyama experiment

General Overview

• Real process:
$$a(x,t) = a(x;\theta) + \delta(t) + \epsilon$$
, $\epsilon \stackrel{i.i.d.}{\sim} \mathcal{N}(0,\sigma_{\epsilon}^2)$

IDM	MA-IDM (GP+IDM)	Dynamic IDM (AR+IDM)
$egin{aligned} m{ heta}_{ ext{IDM}} \ m{ heta} \ $	$oldsymbol{ heta}_{ ext{IDM}},\ell,\sigma_k$ (7)	$oldsymbol{ heta}_{ ext{IDM}},oldsymbol{ ho},\sigma_\eta$ (6+d)
<i>i.i.d.</i> white noise, bad uncertainty quantification	Correlated error, limited to kernel functions	Correlated error, good uncertainty quantification
$a^{(t)} = a^{(t)}_{\text{IDM}} + \epsilon_t$	$a^{(t)} = a^{(t)}_{\text{IDM}} + a^{(t)}_{\text{GP}}$	$a^{(t)} = \frac{a_{\text{IDM}}^{(t)} + \eta^{(t)}}{+ \sum_{p} \rho_{p}(\hat{a}^{(t-p)} - a_{\text{IDM}}^{(t-p)})}$

Discussion and takeaway

- Generate diverse types of drivers. [Bayesian calibration/Hierarchical structure]
- Produce good uncertainty for each driver. [GP/AR]
- Simulate human-like car-following behaviors. [Stochastic Simulation]

> Importance of probabilistic simulation!

- > positive correlations (0~5 sec) & negative correlations (5~10 sec)
 - \rightarrow at least 10 sec historical information as input.
- > Provide enough information to calibrate car-following models.
- > IDM is very powerful.

References

- Treiber, M., Hennecke, A., & Helbing, D. (2000). Congested traffic states in empirical observations and microscopic simulations. Physical Review E, 62(2), 1805.
- Punzo, V., Zheng, Z., & Montanino, M. (2021). About calibration of car-following dynamics of automated and humandriven vehicles: Methodology, guidelines and codes. Transportation Research Part C: Emerging Technologies, 128, 103165.
- Krajewski, R., Bock, J., Kloeker, L., & Eckstein, L. (2018). The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 2118-2125). IEEE.
- Anesiadou, A., Makridis, M., Ciuffo, B., & Mattas, K. (2020): Open ACC Database. European Commission, Joint Research Centre (JRC) [Dataset] PID: http://data.europa.eu/89h/9702c950-c80f-4d2f-982f-44d06ea0009f
- Treiber, M., Kesting, A., & Helbing, D. (2006). Delays, inaccuracies and anticipation in microscopic traffic models. Physica A: Statistical Mechanics and its Applications, 360(1), 71-88.

Read More

> Paper:

Zhang, C., & Sun, L. (2024). Bayesian calibration of the intelligent driver model. *IEEE Transactions on Intelligent Transportation Systems*.

Zhang, C., Wang, W., & Sun, L. (2024). Calibrating car-following models via Bayesian dynamic regression. Transportation Research Part C: Emerging Technologies, 104719.

> Code:

https://github.com/Chengyuan-Zhang/IDM_Bayesian_Calibration

Thanks! Questions?

Chengyuan Zhang, Wenshuo Wang, and Lijun Sun*

Department of Civil Engineering McGill University *Contact: lijun.sun@mcgill.ca

July 17, 2024

