Notes

My Research Notes (click here for all posts):

πŸ“™: Bayesian Learning; πŸ“•: Math Tricks; πŸ“˜: Driving Behaviors; πŸ“—: Research;

  1. The Log-Sum-Exp Trick;πŸ“•
  2. Forward and backward algorithm in Hidden Markov Models (HMM): To be updated;
  3. Bayesian inference and conjugate priors: To be updated;
  4. Prior settings matter in Bayesian inference (variance): To be updated;
  5. Heterogeneity and Hierarchical Models;πŸ“™
  6. Random Effects and Hierarchical Models in Driving Behaviors Modeling;πŸ“™πŸ“˜
  7. Proof: unbiasedness of ordinary least squares (OLS);πŸ“•
  8. From ordinary least squares (OLS) to generalized least squares (GLS);πŸ“•
  9. Modeling Autocorrelation: FFT vs Gaussian Processes;πŸ“™πŸ“•
  10. Bayesian calibration of car-following models: To be updated;
  11. Autoregressive (AR) processes: To be updated;
  12. Connections among AR processes, Cochrane-Orcutt correction, Ornstein-Uhlenbeck processes, and Gaussian Processes; πŸ“™πŸ“•πŸ“˜
  13. Matrix Derivative of Frobenius norm involving Hadamard Product;πŸ“•
  14. γ€Šη€ΎδΌšεž‹δΊ€δΊ’δΈŽθ‡ͺεŠ¨ι©Ύι©ΆοΌšη»ΌθΏ°γ€‹ 1. Enzoηš„ζ–‡η«  1. ηŸ₯乎;πŸ“˜πŸ“—
  15. ε€šθΎ“ε‡Ίι«˜ζ–―θΏ‡η¨‹ (multiple output GP) 1. Enzoηš„ζ–‡η«  1. ηŸ₯乎;πŸ“™
  1. Bayesian Network;
  2. Pattern Recognition and Machine Learning (PRML) ;
  3. Spatiotemporal Data Modeling;